中考復(fù)習(xí)(十三):閱讀理解型問題_第1頁
中考復(fù)習(xí)(十三):閱讀理解型問題_第2頁
中考復(fù)習(xí)(十三):閱讀理解型問題_第3頁
中考復(fù)習(xí)(十三):閱讀理解型問題_第4頁
中考復(fù)習(xí)(十三):閱讀理解型問題_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

海豚教育個性化教學(xué)簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)通過觀察、實驗、歸納、類比等活動獲得數(shù)學(xué)猜想,并能對所作出的猜想進(jìn)行驗證;能進(jìn)行一些簡單的嚴(yán)密的邏輯論證,并有條理地表達(dá)自己的證明;3.分析題中提供的信息,有利于提高學(xué)生分析、解決實際問題的能力.授課章節(jié)專題復(fù)習(xí):閱讀理解型問題知識點(diǎn)導(dǎo)航考點(diǎn)一:閱讀試題提供新定義、新定理考點(diǎn)二:閱讀試題信息,歸納總結(jié)提煉數(shù)學(xué)思維方法考點(diǎn)三:閱讀相關(guān)信息,通過歸納探索,發(fā)現(xiàn)規(guī)律,得出結(jié)論考點(diǎn)四:閱讀試題信息,借助已有數(shù)學(xué)思想方法解決新問題教師備注課堂反饋準(zhǔn)時上課:無遲到和早退現(xiàn)象□優(yōu)□良□中□差知識點(diǎn)全掌握:教師任意抽查檢測當(dāng)天所學(xué),學(xué)生全部掌握□優(yōu)□良□中□差學(xué)習(xí)態(tài)度認(rèn)真:上課期間認(rèn)真聽講,無任何不配合老師情況□優(yōu)□良□中□差出門考及3A作業(yè):上周兩項作業(yè)均全部認(rèn)真完成□優(yōu)□良□中□差學(xué)生簽字:(課后)教師簽字:(課后)備注:課后教師拍照此頁上傳至學(xué)生學(xué)習(xí)提升專屬小微信群海豚教育個性化教學(xué)教案(內(nèi)頁1)【例題講解】一、中考專題詮釋閱讀理解型問題在近幾年的全國中考試題中頻頻“亮相”,特別引起我們的重視.這類問題一般文字?jǐn)⑹鲚^長,信息量較大,各種關(guān)系錯綜復(fù)雜,考查的知識也靈活多樣,既考查學(xué)生的閱讀能力,又考查學(xué)生的解題能力的新穎數(shù)學(xué)題.二、解題策略與解法精講解決閱讀理解問題的關(guān)鍵是要認(rèn)真仔細(xì)地閱讀給定的材料,弄清材料中隱含了什么新的數(shù)學(xué)知識、結(jié)論,或揭示了什么數(shù)學(xué)規(guī)律,或暗示了什么新的解題方法,然后展開聯(lián)想,將獲得的新信息、新知識、新方法進(jìn)行遷移,建模應(yīng)用,解決題目中提出的問題.考點(diǎn)一:閱讀試題提供新定義、新定理例1:閱讀材料:

關(guān)于三角函數(shù)還有如下的公式:

sin(α±β)=sinαcosβ±cosasinβ;

tan(α±β)=。利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值.

例:tan15°=tan(45°-30°)===2-。

根據(jù)以上閱讀材料,請選擇適當(dāng)?shù)墓浇獯鹣旅鎲栴}

(1)計算:sin15°;

(2)烏蒙鐵塔是六盤水市標(biāo)志性建筑物之一(圖1),小華想用所學(xué)知識來測量該鐵塔的高度,如圖2,小華站在離塔底A距離7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.62米,請幫助小華求出烏蒙鐵塔的高度.(精確到0.1米,參考數(shù)據(jù)=1.732,=1.414)

練習(xí):定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.

性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.

理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.

應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.

(1)求證:△AOB和△AOE是“友好三角形”;

(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.

探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得

到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.考點(diǎn)二:閱讀試題信息,歸納總結(jié)提煉數(shù)學(xué)思維方法例2:在國道202公路改建工程中,某路段長4000米,由甲乙兩個工程隊擬在30天內(nèi)(含30天)合作完成,已知兩個工程隊各有10名工人(設(shè)甲乙兩個工程隊的工人全部參與生產(chǎn),甲工程隊每人每天的工作量相同,乙工程隊每人每天的工作量相同),甲工程隊1天、乙工程隊2天共修路200米;甲工程隊2天,乙工程隊3天共修路350米.

(1)試問甲乙兩個工程隊每天分別修路多少米?

(2)甲乙兩個工程隊施工10天后,由于工作需要需從甲隊抽調(diào)m人去學(xué)習(xí)新技術(shù),總部要求在規(guī)定時間內(nèi)完成,請問甲隊可以抽調(diào)多少人?

(3)已知甲工程隊每天的施工費(fèi)用為0.6萬元,乙工程隊每天的施工費(fèi)用為0.35萬元,要使該工程的施工費(fèi)用最低,甲乙兩隊需各做多少天?最低費(fèi)用為多少?

練習(xí):某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價和售價如下表所示:甲乙進(jìn)價(元/部)40002500售價(元/部)43003000該商場計劃購進(jìn)兩種手機(jī)若干部,共需15.5萬元,預(yù)計全部銷售后可獲毛利潤共2.1萬元.(毛利潤=(售價-進(jìn)價)×銷售量)

(1)該商場計劃購進(jìn)甲、乙兩種手機(jī)各多少部?

(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.考點(diǎn)三:閱讀相關(guān)信息,通過歸納探索,發(fā)現(xiàn)規(guī)律,得出結(jié)論例3:小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:

問題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連接AE并延長交BC的延長線于點(diǎn)F,求證:S四邊形ABCD=S△ABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個定點(diǎn)P.過點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,≈1.73)

拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)(6,3)(,)、(4、2),過點(diǎn)p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以O(shè)為頂點(diǎn)的四邊形面積的最大值。練習(xí):某學(xué)?;顒有〗M在作三角形的拓展圖形,研究其性質(zhì)時,經(jīng)歷了如下過程:

●操作發(fā)現(xiàn):

在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖1所示,其中DF⊥AB于點(diǎn)F,EG⊥AC于點(diǎn)G,M是BC的中點(diǎn),連接MD和ME,則下列結(jié)論正確的是(填序號即可)

①AF=AG=AB;②MD=ME;③整個圖形是軸對稱圖形;④∠DAB=∠DMB.

●數(shù)學(xué)思考:

在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側(cè)作等腰直角三角形,如圖2所示,M是BC的中點(diǎn),連接MD和ME,則MD與ME具有怎樣的數(shù)量和位置關(guān)系?請給出證明過程;

●類比探究:

在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內(nèi)側(cè)作等腰直角三角形,如圖3所示,M是BC的中點(diǎn),連接MD和ME,試判斷△MED的形狀.答:.

考點(diǎn)四:閱讀試題信息,借助已有數(shù)學(xué)思想方法解決新問題例4:閱讀下面材料:

小明遇到這樣一個問題:如圖1,在邊長為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠GHN=∠DEP=45°時,求正方形MNPQ的面積.

小明發(fā)現(xiàn),分別延長QE,MF,NG,PH交FA,GB,HC,ED的延長線于點(diǎn)R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個全等的等腰直角三角形(如圖2)

請回答:

(1)若將上述四個等腰直角三角形拼成一個新的正方形(無縫隙不重疊),則這個新正方形的邊長為;

(2)求正方形MNPQ的面積.

(3)參考小明思考問題的方法,解決問題:

如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點(diǎn)D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△RPQ.若S△RPQ=,則AD的長為.

練習(xí):一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究

如圖1,液面剛好過棱CD,并與棱BB′交于點(diǎn)Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.

解決問題:

(1)CQ與BE的位置關(guān)系是,BQ的長是dm;

(2)求液體的體積;(參考算法:直棱柱體積V液=底面積SBCQ×高AB)

(3)求α的度數(shù).(注:sin49°=cos41°=,tan37°=)

拓展:在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點(diǎn)P,設(shè)PC=x,BQ=y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.

延伸:在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α=60°時,通過計算,判斷溢出容器的液體能否達(dá)到4dm3.

【課堂訓(xùn)練】1.閱讀理解:

如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問題:

(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;

(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(diǎn)(即每個小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個強(qiáng)相似點(diǎn)E;

拓展探究:

(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.

2.(1)觀察發(fā)現(xiàn)

如圖(1):若點(diǎn)A、B在直線m同側(cè),在直線m上找一點(diǎn)P,使AP+BP的值最小,做法如下:

作點(diǎn)B關(guān)于直線m的對稱點(diǎn)B′,連接AB′,與直線m的交點(diǎn)就是所求的點(diǎn)P,線段AB′的長度即為AP+BP的最小值.

如圖(2):在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小,做法如下:

作點(diǎn)B關(guān)于AD的對稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為.

(2)實踐運(yùn)用

如圖(3):已知⊙O的直徑CD為2,的度數(shù)為60°,點(diǎn)B是的中點(diǎn),在直徑CD上作出點(diǎn)P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為.

(3)拓展延伸

如圖(4):點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),分別在邊AB、BC上作出點(diǎn)M,點(diǎn)N,使PM+PN的值最小,保留作圖痕跡,不寫作法.3.閱讀材料

如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.

解決問題

(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;

(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)

海豚教育【出門考】(年月日周)學(xué)生姓名:年級:科目:評價:【出門考】正文訂正欄1.【提出問題】

(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.

【類比探究】

(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.

【拓展延伸】

(3)如圖3,在等腰△ABC中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論