2022年廣西合浦縣九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第1頁
2022年廣西合浦縣九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第2頁
2022年廣西合浦縣九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第3頁
2022年廣西合浦縣九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第4頁
2022年廣西合浦縣九年級數(shù)學(xué)上冊期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列四個物體的俯視圖與右邊給出視圖一致的是()A. B. C. D.2.x1,x2是關(guān)于x的一元二次方程x2-mx+m-2=0的兩個實數(shù)根,是否存在實數(shù)m使=0成立?則正確的結(jié)論是()A.m=0時成立 B.m=2時成立 C.m=0或2時成立 D.不存在3.如圖,P、Q是⊙O的直徑AB上的兩點,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于點E,若AB=20,PC=OQ=6,則OE的長為()A.1 B.1.5 C.2 D.2.54.已知y=(m+2)x|m|+2是關(guān)于x的二次函數(shù),那么m的值為()A.﹣2 B.2 C.±2 D.05.如圖,OA是⊙O的半徑,弦BC⊥OA,D是優(yōu)弧上一點,如果∠AOB=58o,那么∠ADC的度數(shù)為()A.32o B.29o C.58o D.116o6.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.7.如圖所示,在平行四邊形ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則DF:FC=()A.1:3 B.1:4 C.2:3 D.1:28.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.9.二次函數(shù)的圖象如圖所示,下列說法中錯誤的是(

)A.函數(shù)的對稱軸是直線x=1B.當(dāng)x<2時,y隨x的增大而減小C.函數(shù)的開口方向向上D.函數(shù)圖象與y軸的交點坐標(biāo)是(0,-3)10.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c-m=0有兩個不相等的實數(shù)根,下列結(jié)論:①b2﹣4ac<0;②abc>0;③a-b+c>0;④m>-2,其中,正確的個數(shù)有A.1個 B.2個 C.3個 D.4個11.如圖,的頂點均在上,若,則的度數(shù)為()A. B. C. D.12.將拋物線向右平移一個單位,向上平移2個單位得到拋物線A. B. C. D.二、填空題(每題4分,共24分)13.小亮同學(xué)想測量學(xué)校旗桿的高度,他在某一時刻測得米長的竹竿豎直放置時影長為米,同時測量旗桿的影長時由于影子不全落在地面上,他測得地面上的影長為米,留在墻上的影高為米,通過計算他得出旗桿的高度是___________米.14.若二次函數(shù)的圖象與x軸只有一個公共點,則實數(shù)n=______.15.已知一塊圓心角為300°的扇形鐵皮,用它做一個圓錐形的煙囪帽(接縫忽略不計),若圓錐的底面圓的直徑是80cm,則這塊扇形鐵皮的半徑是_____cm.16.如圖,面積為6的矩形的頂點在反比例函數(shù)的圖像上,則__________.17.某種商品的標(biāo)價為400元/件,經(jīng)過兩次降價后的價格為324元/件,并且兩次降價的百分率相同,則該商品每次降價的百分率為_____.18.寫出一個圖象的頂點在原點,開口向下的二次函數(shù)的表達式_____.三、解答題(共78分)19.(8分)用一段長為28m的鐵絲網(wǎng)與一面長為8m的墻面圍成一個矩形菜園,為了使菜園面積盡可能的大,給出了甲、乙兩種圍法,請通過計算來說明這個菜園長、寬各為多少時,面積最大?最大面積是多少?20.(8分)如圖,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.21.(8分)如圖,直線y=1x+1與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=1.(1)求H點的坐標(biāo)及k的值;(1)點P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標(biāo);(3)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,點Q(m,0)是x軸上的動點,當(dāng)△MNQ的面積為3時,請求出所有滿足條件的m的值.22.(10分)如圖,拋物線的表達式為y=ax2+4ax+4a-1(a≠0),它的圖像的頂點為A,與x軸負(fù)半軸相交于點B、點C(點B在點C左側(cè)),與y軸交于點D,連接AO交拋物線于點E,且S△AEC:S△CEO=1:3.(1)求點A的坐標(biāo)和拋物線表達式;(2)在拋物線的對稱軸上是否存在一點P,使得△BDP的內(nèi)心也在對稱軸上,若存在,求點P的坐標(biāo);若不存在,請說明理由;(3)連接BD,點Q是y軸左側(cè)拋物線上的一點,若以Q為圓心,為半徑的圓與直線BD相切,求點Q的坐標(biāo).23.(10分)已知關(guān)于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一個根為﹣1,求k的值;(2)若此一元二次方程有實數(shù)根,求k的取值范圍.24.(10分)如圖,在Rt△ABC中,∠ABC=90o,D是AC的中點,⊙O經(jīng)過A、B、D三點,CB的延長線交⊙O于點E.(1)求證:AE=CE.(2)若EF與⊙O相切于點E,交AC的延長線于點F,且CD=CF=2cm,求⊙O的直徑.(3)若EF與⊙O相切于點E,點C在線段FD上,且CF:CD=2:1,求sin∠CAB.25.(12分)金牛區(qū)某學(xué)校開展“數(shù)學(xué)走進生活”的活動課,本次任務(wù)是測量大樓AB的高度.如圖,小組成員選擇在大樓AB前的空地上的點C處將無人機垂直升至空中D處,在D處測得樓AB的頂部A處的仰角為,測得樓AB的底部B處的俯角為.已知D處距地面高度為12m,則這個小組測得大樓AB的高度是多少?(結(jié)果保留整數(shù).參考數(shù)據(jù):,,)26.速滑運動受到許多年輕人的喜愛。如圖,四邊形是某速滑場館建造的滑臺,已知,滑臺的高為米,且坡面的坡度為.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.(1)求新坡面的坡角及的長;(2)原坡面底部的正前方米處是護墻,為保證安全,體育管理部門規(guī)定,坡面底部至少距護墻米。請問新的設(shè)計方案能否通過,試說明理由(參考數(shù)據(jù):)

參考答案一、選擇題(每題4分,共48分)1、C【詳解】解:幾何體的俯視圖為,故選C【點睛】本題考查由三視圖判斷幾何體,難度不大.2、A【解析】∵x1,x2是關(guān)于x的一元二次方程x2-bx+b-2=0的兩個實數(shù)根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,則故滿足條件的b的值為0故選A.3、C【分析】因為OCP和ODQ為直角三角形,根據(jù)勾股定理可得OP、DQ、PQ的長度,又因為CPDQ,兩直線平行內(nèi)錯角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可證CPE∽DQE,可得,設(shè)PE=x,則EQ=14-x,解得x的取值,OE=OP-PE,則OE的長度可得.【詳解】解:∵在⊙O中,直徑AB=20,即半徑OC=OD=10,其中CPAB,QDAB,∴OCP和ODQ為直角三角形,根據(jù)勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CPAB,QDAB,垂直于用一直線的兩直線相互平行,∴CPDQ,且C、D連線交AB于點E,∴∠PCE=∠EDQ,(兩直線平行,內(nèi)錯角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故,設(shè)PE=x,則EQ=14-x,∴,解得x=6,∴OE=OP-PE=8-6=2,故選:C.【點睛】本題考察了勾股定理、相似三角形的應(yīng)用、兩直線平行的性質(zhì)、圓的半徑,解題的關(guān)鍵在于證明CPE與DQE相似,并得出線段的比例關(guān)系.4、B【解析】試題解析:是關(guān)于的二次函數(shù),解得:故選B.5、B【分析】根據(jù)垂徑定理可得,根據(jù)圓周角定理可得∠AOB=2∠ADC,進而可得答案.【詳解】解:∵OA是⊙O的半徑,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故選B.【點睛】此題主要考查了圓周角定理和垂徑定理,關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.6、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當(dāng)他忘記了末位數(shù)字時,要一次能打開的概率是.故選A.7、D【解析】解:在平行四邊形ABCD中,AB∥DC,則△DFE∽△BAE,∴DF:AB=DE:EB.∵O為對角線的交點,∴DO=BO.又∵E為OD的中點,∴DE=DB,則DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故選D.8、A【詳解】此題考查了概率公式的應(yīng)用.注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.根據(jù)題意得:,解得:a=1,經(jīng)檢驗,a=1是原分式方程的解,故本題選A.9、B【解析】利用二次函數(shù)的解析式與圖象,判定開口方向,求得對稱軸,與y軸的交點坐標(biāo),進一步利用二次函數(shù)的性質(zhì)判定增減性即可.【詳解】解:∵y=x2-2x-3=(x-1)2-4,∴對稱軸為直線x=1,又∵a=1>0,開口向上,∴x<1時,y隨x的增大而減小,令x=0,得出y=-3,∴函數(shù)圖象與y軸的交點坐標(biāo)是(0,-3).因此錯誤的是B.故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),拋物線與坐標(biāo)軸的交點坐標(biāo),掌握二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵10、C【詳解】解:如圖所示:圖象與x軸有兩個交點,則b2﹣4ac>0,故①錯誤;∵圖象開口向上,∴a>0,∵對稱軸在y軸右側(cè),∴a,b異號,∴b<0,∵圖象與y軸交于x軸下方,∴c<0,∴abc>0,故②正確;當(dāng)x=﹣1時,a﹣b+c>0,故③選項正確;∵二次函數(shù)y=ax2+bx+c的頂點坐標(biāo)縱坐標(biāo)為:﹣2,∴關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數(shù)根,則m>﹣2,故④正確.故選C.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.11、D【分析】根據(jù)同弧所對圓心角等于圓周角的兩倍,可得到∠BOC=2∠BAC,再結(jié)合已知即可得到此題的答案.【詳解】∵∠BAC和∠BOC分別是所對的圓周角和圓心角,∴∠BOC=2∠BAC.∵∠BAC=35°,∴∠BOC=70°.故選D.【點睛】本題考查了圓周角定理,熟練掌握定理是解題的關(guān)鍵.12、B【分析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線向右平移一個單位所得直線解析式為:;再向上平移2個單位為:,即.故選B.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)題意畫出圖形,然后利用某物體的實際高度:影長=被測物體的實際高度:被測物體的影長即可求出旗桿的高度.【詳解】根據(jù)題意畫出如下圖形,有,則AC即為所求.設(shè)AB=x則解得∴故答案為10.5.【點睛】本題主要考查相似三角形的應(yīng)用,掌握某物體的實際高度:影長=被測物體的實際高度:被測物體的影長是解題的關(guān)鍵.14、1.【解析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案為1.15、1【解析】利用底面周長=展開圖的弧長可得.【詳解】解:設(shè)這個扇形鐵皮的半徑為rcm,由題意得=π×80,解得r=1.故這個扇形鐵皮的半徑為1cm,故答案為1.【點睛】本題考查了圓錐的計算,解答本題的關(guān)鍵是確定圓錐的底面周長=展開圖的弧長這個等量關(guān)系,然后由扇形的弧長公式和圓的周長公式求值.16、-1【分析】根據(jù)反比例函數(shù)系數(shù)k的幾何意義可得|k|=1,再根據(jù)函數(shù)所在的象限確定k的值.【詳解】解:∵反比例函數(shù)的圖象經(jīng)過面積為1的矩形OABC的頂點B,

∴|k|=1,k=±1,

∵反比例函數(shù)的圖象經(jīng)過第二象限,

∴k=-1.

故答案為:-1.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|.17、10%【解析】設(shè)該種商品每次降價的百分率為x%,根據(jù)“兩次降價后的售價=原價×(1-降價百分比)的平方”,即可得出關(guān)于x的一元二次方程,解方程即可得出結(jié)論.【詳解】設(shè)該種商品每次降價的百分率為x%,依題意得:400×(1-x%)2=324,解得:x=10,或x=190(舍去).答:該種商品每次降價的百分率為10%.故答案為:10%【點睛】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)數(shù)量關(guān)系得出關(guān)于x的一元二次方程.18、y=﹣2x2(答案不唯一)【分析】由題意知,圖象過原點,開口向下則二次項系數(shù)為負(fù)數(shù),由此可寫出滿足條件的二次函數(shù)的表達式.【詳解】解:由題意可得:y=﹣2x2(答案不唯一).故答案為:y=﹣2x2(答案不唯一).【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.三、解答題(共78分)19、當(dāng)矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.【分析】根據(jù)矩形的面積公式甲圖列出算式可以直接求面積,乙圖設(shè)垂直于墻的一邊為x,則另一邊為(18﹣x)(包括墻長)列出二次函數(shù)解析式即可求解.【詳解】解:如圖甲:設(shè)矩形的面積為S,則S=8×(18﹣8)=2.所以當(dāng)菜園的長、寬分別為10m、8m時,面積為2;如圖乙:設(shè)垂直于墻的一邊長為xm,則另一邊為(18﹣1x﹣8)+8=(18﹣x)m.所以S=x(18﹣x)=﹣x1+18x=﹣(x﹣9)1+81因為﹣1<0,當(dāng)x=9時,S有最大值為81,所以當(dāng)矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.綜上:當(dāng)矩形的長、寬分別為9m、9m時,面積最大,最大面積為81m1.【點睛】本題考查了二次函數(shù)的應(yīng)用,難度一般,關(guān)鍵在于找到等量關(guān)系列出方程求解,另外注意配方法求最大值在實際中的應(yīng)用20、.【分析】首先根據(jù)Rt△ABD的三角函數(shù)求出BD的長度,然后得出CD的長度,根據(jù)勾股定理求出AC的長度,從而得出∠C的正弦值.【詳解】∵在直角△ABD中,tan∠BAD=,∴BD=AD?tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13,∴sinC=.【點睛】本題考查了解直角三角形中三角函數(shù)的應(yīng)用,要熟練掌握好邊角之間的關(guān)系.21、(1)k=4;(1)點P的坐標(biāo)為(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.【解析】(1)先求出OA=1,結(jié)合tan∠AHO=1可得OH的長,即可得知點M的橫坐標(biāo),代入直線解析式可得點M坐標(biāo),代入反比例解析式可得k的值;

(1)分AM=AP和AM=PM兩種情況分別求解可得;

(2)先求出點N(4,1),延長MN交x軸于點C,待定系數(shù)法求出直線MN解析式為y=-x+3.據(jù)此求得OC=3,再由S△MNQ=S△MQC-S△NQC=2知QC=1,再進一步求解可得.【詳解】(1)由y=1x+1可知A(0,1),即OA=1,∵tan∠AHO=1,∴OH=1,∴H(1,0),∵MH⊥x軸,∴點M的橫坐標(biāo)為1,∵點M在直線y=1x+1上,∴點M的縱坐標(biāo)為4,即M(1,4),∵點M在y=上,∴k=1×4=4;(1)①當(dāng)AM=AP時,∵A(0,1),M(1,4),∴AM=,則AP=AM=,∴此時點P的坐標(biāo)為(0,1﹣)或(0,1+);②若AM=PM時,設(shè)P(0,y),則PM=,∴=,解得y=1(舍)或y=6,此時點P的坐標(biāo)為(0,6),綜上所述,點P的坐標(biāo)為(0,6)或(0,1+),或(0,1﹣);(2)∵點N(a,1)在反比例函數(shù)y=(x>0)圖象上,∴a=4,∴點N(4,1),延長MN交x軸于點C,設(shè)直線MN的解析式為y=mx+n,則有解得,∴直線MN的解析式為y=﹣x+3.∵點C是直線y=﹣x+3與x軸的交點,∴點C的坐標(biāo)為(3,0),OC=3,∵S△MNQ=2,∴S△MNQ=S△MQC﹣S△NQC=×QC×4﹣×QC×1=QC=2,∴QC=1,∵C(3,0),Q(m,0),∴|m﹣3|=1,∴m=7或2,故答案為7或2.【點睛】本題是反比例函數(shù)綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式、等腰三角形的判定與性質(zhì)、兩點之間的距離公式及三角形的面積計算.22、(1)拋物線表達式為y=x2+4x+3;(2)P(-2,-3);(3)Q(-4,3).【分析】(1)根據(jù)拋物線的對稱軸易求得頂點坐標(biāo),再根據(jù)S△AEC:S△CEO=1:3,求得OE:OA=3:4,再證得△OFE∽△OMA,求得點E的坐標(biāo),從而求得答案;(2)根據(jù)內(nèi)心的定義知∠BPM=∠DPM,設(shè)點P(-2,b),根據(jù)三角函數(shù)的定義求得,繼而求得的值,從而求得答案;(3)設(shè)Q(m,m2+4m+3),分類討論,①點Q在BD左上方拋物線上,②點Q在BD下方拋物線上,利用的不同計算方法求得的值,從而求得答案.【詳解】(1)由拋物線y=ax2+4ax+4a-1得對稱軸為直線,當(dāng)時,,∴,∵S△AEC:S△CEO=1:3,∴AE:OE=1:3,∴OE:OA=3:4,過點E作EF⊥x軸,垂足為點F,設(shè)對稱軸與x軸交點為M,如圖,∵EF//AM,∴△OFE∽△OMA,∴,∴,∴,把點代入拋物線表達式y(tǒng)=ax2+4ax+4a-1得,解得:a=1,∴拋物線表達式為:y=x2+4x+3;(2)三角形的內(nèi)心是三個角平分線的交點,∴∠BPM=∠DPM,過點D作DH⊥AM,垂足為點H,設(shè)點P(-2,b),∵tan∠BPM=tan∠DPM,∴,∴,∴,∴P(-2,-3),(3)∵拋物線表達式為:y=x2+4x+3,∴拋物線與軸和軸的交點坐標(biāo)分別為:B(-3,0),C(-1,0),D(0,3),∴,∴設(shè)Q(m,m2+4m+3),①點Q在BD左上方拋物線上,如圖:作BG⊥x軸交BD于G,QF⊥x軸交于F,作QE⊥BD于E,設(shè)直線QD的解析式為:,∵點Q的坐標(biāo)為(m,m2+4m+3)代入得:,∴直線QD的解析式為:,當(dāng)時,,∴點G的坐標(biāo)為;,∴,∵,∴,即:,解得:或(不合題意,舍去),∴點的坐標(biāo)為:);②點Q在BD下方拋物線上,如圖:QF⊥x軸交于F,交BD于G,作QE⊥BD于E,設(shè)直線BD的解析式為:,將點B(-3,0)代入得:,∴直線BD的解析式為:,當(dāng)時,,∴點G的坐標(biāo)為;,∴,∵,∴,即:,∵∴方程無解,綜上:點的坐標(biāo)為:).【點睛】本題考查了運用待定系數(shù)法求直線及拋物線的解析式,三角函數(shù)的定義,勾股定理,三角形的面積,綜合性比較強,學(xué)會分類討論的思想思考問題,利用三角形面積的不同計算方法構(gòu)建方程求值是解答本題的關(guān)鍵.23、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判別式是非負(fù)數(shù),且二次項系數(shù)不等于2.【詳解】解:(2)將x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論