版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正項(xiàng)等比數(shù)列中,,且與的等差中項(xiàng)為4,則的公比是()A.1 B.2 C. D.2.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.3.已知函數(shù),則()A.1 B.2 C.3 D.44.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.35.一輛郵車從地往地運(yùn)送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時(shí),裝上發(fā)往后面地的郵件各1件,到達(dá)后面各地后卸下前面各地發(fā)往該地的郵件,同時(shí)裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達(dá),,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達(dá)式為().A. B. C. D.6.百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動(dòng)會(huì)中有這樣的一個(gè)小游戲.袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有“仁”、“智”、“雅”、“和”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“仁”、“智”兩個(gè)字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計(jì),恰好第三次就停止摸球的概率為()A. B. C. D.7.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.8.已知復(fù)數(shù)滿足,且,則()A.3 B. C. D.9.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.10.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}11.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣1212.已知直線:()與拋物線:交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線:與拋物線交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為______.14.展開式中的系數(shù)的和大于8而小于32,則______.15.已知雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)在拋物線上,則實(shí)數(shù)的值為___________.16.設(shè)實(shí)數(shù),滿足,則的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)網(wǎng)絡(luò)看病就是國(guó)內(nèi)或者國(guó)外的單個(gè)人、多個(gè)人或者單位通過(guò)國(guó)際互聯(lián)網(wǎng)或者其他局域網(wǎng)對(duì)自我、他人或者某種生物的生理疾病或者機(jī)器故障進(jìn)行查找詢問(wèn)、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實(shí)地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機(jī)構(gòu)調(diào)研了患者對(duì)網(wǎng)絡(luò)看病,實(shí)地看病的滿意程度,在每種看病方式的患者中各隨機(jī)抽取15名,將他們分成兩組,每組15人,分別對(duì)網(wǎng)絡(luò)看病,實(shí)地看病兩種方式進(jìn)行滿意度測(cè)評(píng),根據(jù)患者的評(píng)分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對(duì)于網(wǎng)絡(luò)看病、實(shí)地看病那種方式的滿意度更高?并說(shuō)明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計(jì)網(wǎng)絡(luò)看病實(shí)地看病總計(jì)并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?(3)從網(wǎng)絡(luò)看病的評(píng)價(jià)“滿意”的人中隨機(jī)抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知在中,角,,的對(duì)邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.19.(12分)已知函數(shù)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)a的取值范圍;(2)若函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為和,且,求實(shí)數(shù)a的取值范圍.(e是自然對(duì)數(shù)的底數(shù))20.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對(duì)稱軸方程為且,求的值.21.(12分)已知橢圓,上頂點(diǎn)為,離心率為,直線交軸于點(diǎn),交橢圓于,兩點(diǎn),直線,分別交軸于點(diǎn),.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.22.(10分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個(gè)整數(shù),求實(shí)數(shù)k的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè)等比數(shù)列的公比為q,,運(yùn)用等比數(shù)列的性質(zhì)和通項(xiàng)公式,以及等差數(shù)列的中項(xiàng)性質(zhì),解方程可得公比q.【詳解】由題意,正項(xiàng)等比數(shù)列中,,可得,即,與的等差中項(xiàng)為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列通項(xiàng)公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運(yùn)算能力,屬于基礎(chǔ)題.2、A【解析】
根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡(jiǎn)、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡(jiǎn)、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、C【解析】
結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.4、A【解析】
根據(jù)復(fù)數(shù)除法運(yùn)算化簡(jiǎn),結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復(fù)數(shù)的除法運(yùn)算化簡(jiǎn)可得,因?yàn)槭羌兲摂?shù),所以,∴,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題.5、D【解析】
根據(jù)題意,分析該郵車到第站時(shí),一共裝上的郵件和卸下的郵件數(shù)目,進(jìn)而計(jì)算可得答案.【詳解】解:根據(jù)題意,該郵車到第站時(shí),一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點(diǎn)睛】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.6、A【解析】
由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當(dāng)1,2同時(shí)出現(xiàn)時(shí)即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點(diǎn)睛】本題考查了簡(jiǎn)單隨機(jī)抽樣中隨機(jī)數(shù)的應(yīng)用和古典概型概率的計(jì)算,屬于基礎(chǔ)題.7、A【解析】
設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),,,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算得出點(diǎn)的軌跡方程,將和轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,,,建立平面直角坐標(biāo)系,設(shè),,,由,可得,即,化簡(jiǎn)得點(diǎn)的軌跡方程為,則,則轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,,,轉(zhuǎn)化為圓上的點(diǎn)與點(diǎn)的距離,,.故選:A.【點(diǎn)睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問(wèn)題轉(zhuǎn)化為圓上的點(diǎn)到定點(diǎn)距離的最值問(wèn)題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.8、C【解析】
設(shè),則,利用和求得,即可.【詳解】設(shè),則,因?yàn)?則,所以,又,即,所以,所以,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.9、C【解析】試題分析:通過(guò)對(duì)以下四個(gè)四棱錐的三視圖對(duì)照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖10、C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.11、D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過(guò)C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問(wèn)題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。12、D【解析】
設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線與拋物線的綜合應(yīng)用,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點(diǎn)睛】線性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.14、4【解析】
由題意可得項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點(diǎn)睛】該題考查的是有關(guān)二項(xiàng)式定理的問(wèn)題,涉及到的知識(shí)點(diǎn)有展開式中項(xiàng)的系數(shù)和,屬于基礎(chǔ)題目.15、【解析】
求出雙曲線的漸近線方程,右準(zhǔn)線方程,得到交點(diǎn)坐標(biāo)代入拋物線方程求解即可.【詳解】解:雙曲線的右準(zhǔn)線,漸近線,雙曲線的右準(zhǔn)線與漸近線的交點(diǎn),交點(diǎn)在拋物線上,可得:,解得.故答案為.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì)以及拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,是基本知識(shí)的考查,屬于基礎(chǔ)題.16、1【解析】
根據(jù)目標(biāo)函數(shù)的解析式形式,分析目標(biāo)函數(shù)的幾何意義,然后判斷求出目標(biāo)函數(shù)取得最優(yōu)解的點(diǎn)的坐標(biāo),即可求解.【詳解】作出實(shí)數(shù),滿足表示的平面區(qū)域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時(shí)最大為1,故答案為:1.【點(diǎn)睛】本題主要考查線性規(guī)劃知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)實(shí)地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】
(1)對(duì)實(shí)地看病滿意度更高,可以從莖葉圖四個(gè)方面選一個(gè)回答即可;(2)先完成列聯(lián)表,再由獨(dú)立性檢驗(yàn)得有的把握認(rèn)為患者看病滿意度與看病方式有關(guān);(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對(duì)實(shí)地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網(wǎng)絡(luò)看病中,有的患者滿意度評(píng)分低于80分;在實(shí)地看病中,有的患者評(píng)分高于80分,因此患者對(duì)實(shí)地看病滿意度更高.(ii)由莖葉圖可知:網(wǎng)絡(luò)看病滿意度評(píng)分的中位數(shù)為73分,實(shí)地看病評(píng)分的中位數(shù)為87分,因此患者對(duì)實(shí)地看病滿意度更高.(iii)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評(píng)分平均分低于80分;實(shí)地看病的滿意度的評(píng)分平均分高于80分,因此患者對(duì)實(shí)地看病滿意度更高.(iV)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評(píng)分在莖6上的最多,關(guān)于莖7大致呈對(duì)稱分布;實(shí)地看病的評(píng)分分布在莖8,上的最多,關(guān)于莖8大致呈對(duì)稱分布,又兩種看病方式打分的分布區(qū)間相同,故可以認(rèn)為實(shí)地看病評(píng)分比網(wǎng)絡(luò)看病打分更高,因此實(shí)地看病的滿意度更高.以上給出了4種理由,考生答出其中任意一一種或其他合理理由均可得分.(2)參加網(wǎng)絡(luò)看病滿意度調(diào)查的15名患者中共有5名對(duì)網(wǎng)絡(luò)看病滿意,10名對(duì)網(wǎng)絡(luò)看病不滿意;參加實(shí)地看病滿意度調(diào)查的15名患者中共有10名對(duì)實(shí)地看病滿意,5名對(duì)實(shí)地看病不滿意.故完成列聯(lián)表如下:滿意不滿意總計(jì)網(wǎng)絡(luò)看病51015實(shí)地看病10515總計(jì)151530于是,所以有的把握認(rèn)為患者看病滿意度與看病方式有關(guān).(3)網(wǎng)絡(luò)看病的評(píng)價(jià)的分?jǐn)?shù)依次為82,85,85,88,92,由小到大分別記為,從網(wǎng)絡(luò)看病的評(píng)價(jià)“滿意”的人中隨機(jī)抽取2人,所有可能情況有:;;;共10種,其中,這2人評(píng)分都低于90分的情況有:;;共6種,故由古典概型公式得這2人評(píng)分都低于90分的概率.【點(diǎn)睛】本題主要考查莖葉圖的應(yīng)用和獨(dú)立性檢驗(yàn),考查古典概型的概率的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18、(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴.∴面積的最大值為.點(diǎn)睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時(shí)要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運(yùn)用基本不等式求最值時(shí),要注意等號(hào)成立的條件,在解題中必須要注明.19、(1);(2).【解析】
(1)首先對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)求出a的取值范圍;(2)首先求出的值,再根據(jù)求出實(shí)數(shù)a的取值范圍.【詳解】(1)函數(shù)的定義域?yàn)槭牵?,若有兩個(gè)極值點(diǎn),則方程一定有兩個(gè)不等的正根,設(shè)為和,且,所以解得,此時(shí),當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,故是極大值點(diǎn),是極小值點(diǎn),故實(shí)數(shù)a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數(shù),由,得,故實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)和單調(diào)性,利用函數(shù)單調(diào)性證明不等式,屬于難題.20、(1)(2)【解析】
(1)由已知利用三角函數(shù)恒等變換的應(yīng)用,正弦定理可求,即可求的值.(2)利用三角函數(shù)恒等變換的應(yīng)用,可得,根據(jù)題意,得到,解得,得到函數(shù)的解析式,進(jìn)而求得的值,利用三角函數(shù)恒等變換的應(yīng)用可求的值.【詳解】(1)由題意,根據(jù)正弦定理,可得,又由,所以,可得,即,又因?yàn)椋瑒t,可得,∵,∴.(2)由(1)可得,所以函數(shù)的圖象的一條對(duì)稱軸方程為,∴,得,即,∴,又,∴,∴.【點(diǎn)睛】本題主要考查了三角函數(shù)恒等變換的應(yīng)用,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《接觸網(wǎng)施工》課件模塊三 接觸網(wǎng)上部工程施工
- 2024版K線圖表解讀詳解教程
- PCS 7 操作員站體系結(jié)構(gòu)(工程師培訓(xùn))
- 教學(xué)研究:三角形分類教案的發(fā)展趨勢(shì)(2024年)
- 北京大學(xué)2024年有機(jī)化學(xué)教案:實(shí)現(xiàn)教學(xué)個(gè)性化
- 科學(xué)實(shí)驗(yàn):《十萬(wàn)個(gè)為什么》動(dòng)手實(shí)踐探科學(xué)
- 2023年護(hù)理心理學(xué)考試復(fù)習(xí)題庫(kù)及答案
- 2024年教案設(shè)計(jì)新趨勢(shì):以《2小毛蟲》為例
- 2024海濱小城科技創(chuàng)新與產(chǎn)業(yè)發(fā)展
- 《假設(shè)檢驗(yàn)完全》課件
- 2024屆重慶市永川區(qū)物理高一第一學(xué)期期中質(zhì)量檢測(cè)試題含解析
- 傳統(tǒng)節(jié)日文化在幼兒園課程中的應(yīng)用研究 論文
- 瀝青改色路面修補(bǔ)施工方案
- 香菇種植示范基地項(xiàng)目可行性策劃實(shí)施方案
- 混凝土硫酸鹽侵蝕基本機(jī)理研究
- 《機(jī)械設(shè)計(jì)基礎(chǔ)A》機(jī)械電子 教學(xué)大綱
- 水工巖石分級(jí)及圍巖分類
- 基因擴(kuò)增實(shí)驗(yàn)室常用儀器使用課件
- 斜井敷設(shè)電纜措施
- 施工機(jī)械設(shè)備租賃實(shí)施方案
- 牙膏產(chǎn)品知識(shí)課件
評(píng)論
0/150
提交評(píng)論