版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.若△ABC∽△ADE,若AB=9,AC=6,AD=3,則EC的長是()A.2 B.3 C.4 D.52.如圖,在方格紙中,隨機選擇標(biāo)有序號①②③④⑤中的一個小正方形涂黑,與圖中陰影部分構(gòu)成軸對稱圖形的概率是()A. B. C. D.3.如圖是某貨站傳送貨物的機器的側(cè)面示意圖.,原傳送帶與地面的夾角為,為了縮短貨物傳送距離,工人師傅欲增大傳送帶與地面的夾角,使其由改為,原傳送帶長為.則新傳送帶的長度為()A. B. C. D.無法計算4.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達(dá)式為()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+55.如圖,在中,∠B=90°,AB=2,以B為圓心,AB為半徑畫弧,恰好經(jīng)過AC的中點D,則弧AD與線段AD圍成的弓形面積是()A. B. C. D.6.三角形在正方形網(wǎng)格紙中的位置如圖所示,則的值是()A. B. C. D.7.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C,與x軸交于A,B兩點,其中點B的坐標(biāo)為B(1,0),拋物線的對稱軸交x軸于點D,CE∥AB,并與拋物線的對稱軸交于點E.現(xiàn)有下列結(jié)論:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正確結(jié)論的序號是()A.①② B.①③ C.②③ D.②④8.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,則sinB的值等于()A. B. C. D.9.過反比例函數(shù)圖象上一點作兩坐標(biāo)軸的垂線段,則它們與兩坐標(biāo)軸圍成的四邊形面積為()A.-6 B.-3 C.3 D.610.如圖,⊙O的直徑BA的延長線與弦DC的延長線交于點E,且CE=OB,已知∠DOB=72°,則∠E等于()A.18° B.24° C.30° D.26°11.如圖,一飛鏢游戲板由大小相等的小正方形格子構(gòu)成,向游戲板隨機投擲一枚飛鏢,擊中黑色區(qū)域的概率是()A. B. C. D.12.如圖是半徑為2的⊙O的內(nèi)接正六邊形ABCDEF,則圓心O到邊AB的距離是()A.2 B.1 C. D.二、填空題(每題4分,共24分)13.如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當(dāng)⊙P與直線AB相切時,點P的橫坐標(biāo)是_____14.設(shè)m是一元二次方程x2﹣x﹣2019=0的一個根,則m2﹣m+1的值為___.15.已知是一元二次方程的一個解,則的值是__________.16.“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”這段話摘自《九章算術(shù)》,意思是說:如圖,矩形ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E、南門點F分別是AB,AD的中點,EG⊥AB,F(xiàn)E⊥AD,EG=15里,HG經(jīng)過A點,則FH=__里.17.如圖,已知⊙O是△ABC的外接圓,若∠BOC=100°,則∠BAC=______.18.如圖,若△ADE∽△ACB,且=,DE=10,則BC=________三、解答題(共78分)19.(8分)如圖,直線AB和拋物線的交點是A(0,﹣3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是1.(1)求拋物線的解析式及頂點坐標(biāo);(1)在x軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不在,請說明理由;(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.20.(8分)(1)(問題發(fā)現(xiàn))如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.填空:①線段CF與DG的數(shù)量關(guān)系為;②直線CF與DG所夾銳角的度數(shù)為.(2)(拓展探究)如圖②,將正方形AEFG繞點A逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請利用圖②進(jìn)行說明.(3(解決問題)如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點.若點D在直線BC上運動,連接OE,則在點D的運動過程中,線段OE長的最小值為(直接寫出結(jié)果).21.(8分)綜合與探究:三角形旋轉(zhuǎn)中的數(shù)學(xué)問題.實驗與操作:
Rt△ABC中,∠ABC=90°,∠ACB=30°.將Rt△ABC繞點A按順時針方向旋轉(zhuǎn)得到Rt△AB′C′(點B′,C′分別是點B,C的對應(yīng)點).設(shè)旋轉(zhuǎn)角為α(0°<α<180°),旋轉(zhuǎn)過程中直線B′B和線段CC′相交于點D.猜想與證明:(1)如圖1,當(dāng)AC′經(jīng)過點B時,探究下列問題:①此時,旋轉(zhuǎn)角α的度數(shù)為°;②判斷此時四邊形AB′DC的形狀,并證明你的猜想;(2)如圖2,當(dāng)旋轉(zhuǎn)角α=90°時,求證:CD=C′D;(3)如圖3,當(dāng)旋轉(zhuǎn)角α在0°<α<180°范圍內(nèi)時,連接AD,直接寫出線段AD與C之間的位置關(guān)系(不必證明).22.(10分)如圖,已知,直線垂直平分交于,與邊交于,連接,過點作平行于交于點,連.(1)求證:;(2)求證:四邊形是菱形;(3)若,求菱形的面積.23.(10分)如圖,已知直線y=﹣x+4與反比例函數(shù)的圖象相交于點A(﹣2,a),并且與x軸相交于點B.(1)求a的值;(2)求反比例函數(shù)的表達(dá)式;(3)求△AOB的面積.24.(10分)如圖,⊙為的外接圓,,過點的切線與的延長線交于點,交于點,.(1)判斷與的位置關(guān)系,并說明理由;(2)若,求的長.25.(12分)已知關(guān)于的方程(1)判斷方程根的情況(2)若兩根異號,且正根的絕對值較大,求整數(shù)的值.26.如圖,扇形OAB的半徑OA=4,圓心角∠AOB=90°,點C是弧AB上異于A、B的一點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結(jié)DE,過點C作弧AB所在圓的切線CG交OA的延長線于點G.(1)求證:∠CGO=∠CDE;(2)若∠CGD=60°,求圖中陰影部分的面積.
參考答案一、選擇題(每題4分,共48分)1、C【分析】利用相似三角形的性質(zhì)得,對應(yīng)邊的比相等,求出AE的長,EC=AC-AE,即可計算DE的長;【詳解】∵△ABC∽△ADE,∴,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故選C.【點睛】本題主要考查了相似三角形的判定與性質(zhì),掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.2、C【詳解】解:根據(jù)題意,在方格紙中,隨機選擇標(biāo)有序號①②③④⑤中的一個小正方形涂黑,共有5種等可能的結(jié)果,使與圖中陰影部分構(gòu)成軸對稱圖形的有②④⑤,3種情況,因此可知使與圖中陰影部分構(gòu)成軸對稱圖形的概率為故選C3、B【分析】根據(jù)已知條件,在中,求出AD的長,再在中求出AC的值.【詳解】,,=8即即故選B.【點睛】本題考查了解直角三角形的應(yīng)用,熟練掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.4、A【分析】直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】拋物線y=x2的頂點坐標(biāo)為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標(biāo)為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選A.【點睛】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關(guān)鍵.5、B【分析】如圖(見解析),先根據(jù)圓的性質(zhì)、直角三角形的性質(zhì)可得,再根據(jù)等邊三角形的判定與性質(zhì)可得,然后根據(jù)直角三角形的性質(zhì)、勾股定理可得,從而可得的面積,最后利用扇形BAD的面積減去的面積即可得.【詳解】如圖,連接BD,由題意得:,點D是斜邊AC上的中點,,,是等邊三角形,,,在中,,又是的中線,,則弧AD與線段AD圍成的弓形面積為,故選:B.【點睛】本題考查了扇形的面積公式、等邊三角形的判定與性質(zhì)、直角三角形的性質(zhì)、勾股定理等知識點,通過作輔助線,構(gòu)造等邊三角形和扇形是解題關(guān)鍵.6、A【分析】根據(jù)圖形找到對邊和斜邊即可解題.【詳解】解:由網(wǎng)格紙可知,故選A.【點睛】本題考查了三角函數(shù)的實際應(yīng)用,屬于簡單題,熟悉三角函數(shù)的概念是解題關(guān)鍵.7、D【分析】①根據(jù)拋物線開口方向即可判斷;②根據(jù)對稱軸在y軸右側(cè)即可判斷b的取值范圍;③根據(jù)拋物線與x軸的交點坐標(biāo)與對稱軸即可判斷;④根據(jù)拋物線與x軸的交點坐標(biāo)及對稱軸可得AD=BD,再根據(jù)CE∥AB,即可得結(jié)論.【詳解】①觀察圖象開口向下,a<0,所以①錯誤;②對稱軸在y軸右側(cè),b>0,所以②正確;③因為拋物線與x軸的一個交點B的坐標(biāo)為(1,0),對稱軸在y軸右側(cè),所以當(dāng)x=2時,y>0,即1a+2b+c>0,所以>③錯誤;④∵拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點,∴AD=BD.∵CE∥AB,∴四邊形ODEC為矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正確.綜上:②④正確.故選:D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解決本題的關(guān)鍵是綜合運用二次函數(shù)圖象上點的坐標(biāo)特征、拋物線與x軸的交點進(jìn)行計算.8、C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=,故選C.9、D【分析】根據(jù)反比例函數(shù)的幾何意義可知,矩形的面積為即為比例系數(shù)k的絕對值,即可得出答案.【詳解】設(shè)B點坐標(biāo)為(x,y),由函數(shù)解析式可知,xy=k=-6,則可知S矩形ABCO=|xy|=|k|=6,故選:D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,關(guān)鍵是理解圖中矩形的面積為即為比例系數(shù)k的絕對值.10、B【分析】根據(jù)圓的半徑相等可得等腰三角形,根據(jù)三角形的外角的性質(zhì)和等腰三角形等邊對等角可得關(guān)于∠E的方程,解方程即可求得答案.【詳解】解:如圖,連接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故選:B.【點睛】本題考查了圓的認(rèn)識,等腰三角形的性質(zhì),三角形的外角的性質(zhì).能利用圓的半徑相等得出等腰三角形是解題關(guān)鍵.11、C【解析】利用黑色區(qū)域的面積除以游戲板的面積即可.【詳解】黑色區(qū)域的面積=3×33×12×23×1=4,所以擊中黑色區(qū)域的概率.故選C.【點睛】本題考查了幾何概率:求概率時,已知和未知與幾何有關(guān)的就是幾何概率.計算方法是長度比,面積比,體積比等.12、C【分析】過O作OH⊥AB于H,根據(jù)正六邊形ABCDEF的性質(zhì)得到∠AOB==60°,根據(jù)等腰三角形的性質(zhì)得到∠AOH=30°,AH=AB=1,于是得到結(jié)論.【詳解】解:過O作OH⊥AB于H,在正六邊形ABCDEF中,∠AOB==60°,∵OA=OB,∴∠AOH=30°,AH=AB=1,∴OH=AH=,故選:C.【點睛】本題主要考查了正多邊形和圓,等腰三角形的性質(zhì),解直角三角形,正確的作出輔助線是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)函數(shù)解析式求得A(3,1),B(1,-3),得到OA=3,OB=3根據(jù)勾股定理得到AB=6,設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=2,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】∵直線交x軸于點A,交y軸于點B,
∴令x=1,得y=-3,令y=1,得x=3,
∴A(3,1),B(1.-3),
∴OA=3,OB=3,
∴AB=6,
設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=1,
∵∠ADP=∠AOB=91°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP=2,
∴OP=3-2或OP=3+2,
∴P(3-2,1)或P(3+2,1),
故答案為:.【點睛】本題考查了切線的判定和性質(zhì),一次函數(shù)圖形上點的坐標(biāo)特征,相似三角形的判定和性質(zhì),正確的理解題意并進(jìn)行分類討論是解題的關(guān)鍵.14、2020.【分析】把x=m代入方程計算即可求解.【詳解】解:把x=m代入方程得:m2﹣m﹣2019=0,即m2﹣m=2019,則原式=2019+1=2020,故答案為2020.【點睛】本題考查一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.15、4【分析】把x=-2代入x2+mx+4=0可得關(guān)于m的一元一次方程,解方程即可求出m的值.【詳解】∵是一元二次方程的一個解,∴4-2m+4=0,解得:m=4,故答案為:4【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.16、1.1【解析】∵EG⊥AB,F(xiàn)H⊥AD,HG經(jīng)過A點,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得FH=1.1里.故答案為1.1.17、50°【解析】根據(jù)圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半得.【詳解】解:∵⊙O是△ABC的外接圓,∠BOC=100°,∴∠BAC=∠BOC=×100°=50°.故答案為:50°.【點睛】本題考查圓周角定理,題目比較簡單.18、15【分析】根據(jù)相似三角形的性質(zhì),列出比例式即可解決問題.【詳解】解:∵△ADE∽△ACB,∴,DE=10,∴,∴.【點睛】本題考查了相似三角形的性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì).三、解答題(共78分)19、(1),頂點D(1,);(1)C(,0)或(,0)或(,0);(2)【解析】(1)拋物線的頂點D的橫坐標(biāo)是1,則x1,拋物線過A(0,﹣2),則:函數(shù)的表達(dá)式為:y=ax1+bx﹣2,把B點坐標(biāo)代入函數(shù)表達(dá)式,即可求解;(1)分AB=AC、AB=BC、AC=BC,三種情況求解即可;(2)由S△PAB?PH?xB,即可求解.【詳解】(1)拋物線的頂點D的橫坐標(biāo)是1,則x1①,拋物線過A(0,﹣2),則:函數(shù)的表達(dá)式為:y=ax1+bx﹣2,把B點坐標(biāo)代入上式得:9=15a+5b﹣2②,聯(lián)立①、②解得:a,b,c=﹣2,∴拋物線的解析式為:yx1x﹣2.當(dāng)x=1時,y,即頂點D的坐標(biāo)為(1,);(1)A(0,﹣2),B(5,9),則AB=12,設(shè)點C坐標(biāo)(m,0),分三種情況討論:①當(dāng)AB=AC時,則:(m)1+(﹣2)1=121,解得:m=±4,即點C坐標(biāo)為:(4,0)或(﹣4,0);②當(dāng)AB=BC時,則:(5﹣m)1+91=121,解得:m=5,即:點C坐標(biāo)為(5,0)或(5﹣1,0);③當(dāng)AC=BC時,則:5﹣m)1+91=(m)1+(﹣2)1,解得:m=,則點C坐標(biāo)為(,0).綜上所述:存在,點C的坐標(biāo)為:(±4,0)或(5,0)或(,0);(2)過點P作y軸的平行線交AB于點H.設(shè)直線AB的表達(dá)式為y=kx﹣2,把點B坐標(biāo)代入上式,9=5k﹣2,則k,故函數(shù)的表達(dá)式為:yx﹣2,設(shè)點P坐標(biāo)為(m,m1m﹣2),則點H坐標(biāo)為(m,m﹣2),S△PAB?PH?xB(m1+11m)=-6m1+20m=,當(dāng)m=時,S△PAB取得最大值為:.答:△PAB的面積最大值為.【點睛】本題是二次函數(shù)綜合題.主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點的坐標(biāo)的意義表示線段的長度,從而求出線段之間的關(guān)系.20、(1)①CF=DG;②45°;(2)成立,證明詳見解析;(3).【分析】(1)【問題發(fā)現(xiàn)】連接AF.易證A,F(xiàn),C三點共線.易知AF=AG.AC=AD,推出CF=AC﹣AF=(AD﹣AG)=DG.(2)【拓展探究】連接AC,AF,延長CF交DG的延長線于點K,AG交FK于點O.證明△CAF∽△DAG即可解決問題.(3)【解決問題】證明△BAD≌△CAE,推出∠ACE=∠ABC=45°,可得∠BCE=90°,推出點E的運動軌跡是在射線OCE上,當(dāng)OE⊥CE時,OE的長最短.【詳解】解:(1)【問題發(fā)現(xiàn)】如圖①中,①線段CF與DG的數(shù)量關(guān)系為CF=DG;②直線CF與DG所夾銳角的度數(shù)為45°.理由:如圖①中,連接AF.易證A,F(xiàn),C三點共線.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案為CF=DG,45°.(2)【拓展探究】結(jié)論不變.理由:連接AC,AF,延長CF交DG的延長線于點K,AG交FK于點O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴,∴△CAF∽△DAG,∴,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解決問題】如圖3中,連接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴點E的運動軌跡是在射線CE上,當(dāng)OE⊥CE時,OE的長最短,易知OE的最小值為,故答案為.【點睛】本題考查的知識點是正方形的旋轉(zhuǎn)問題,主要是利用相似三角形性質(zhì)和全等三角形的性質(zhì)來求證線段間的等量關(guān)系,弄清題意,作出合適的輔助線是解題的關(guān)鍵.21、(1)①60;②四邊形AB′DC是平行四邊形,證明見解析.(2)證明見解析;(3)【分析】(1)①根據(jù)矩形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定方法解題;②根據(jù)兩組對邊分別平行的四邊形是平行四邊形解題;(2)過點作的垂線,交于點E,由旋轉(zhuǎn)的性質(zhì)得到對應(yīng)邊、對應(yīng)角相等,進(jìn)而證明△CDB≌△,即可解題;(3)先證明,再由相似三角形的性質(zhì)解題,進(jìn)而證明即可證明.【詳解】解:(1)①60;②四邊形AB′DC是平行四邊形.證明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)得到的,∴∠C′AB′=∠CAB=60°,,.與都是等邊三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD,AC//B′D.∴四邊形AB′DC是平行四邊形.(2)證明:過點作的垂線,交于點E,∴∠B′C′E=90°.∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)90°得到的,∴∠CAC′=∠BAB′=∠B′C′E=90°,,.∴∠AB=∠AB=45°,BC∥AB′∥C′E∵∠AC=∠ABC=90°,∴∠B=∠CBE=45°.∴∠=90°-45°=45°=∠B.∴.在△CBD和△ED中,∴△CDB≌△DE.∴CD=D.(3)AD⊥C,理由如下:設(shè)AC與D交于點O,連接AD,∴∠ADC′=180°-∠DAO-∠AC′C=180°-∠OB′C′-∠AB′B,,
【點睛】本題考查幾何綜合,其中涉及三角形的旋轉(zhuǎn)、等邊三角形的判定與性質(zhì)、平行線的判定、平行四邊形的判定、全等三角形的判定等知識,綜合性較強,是常見考點,掌握相關(guān)知識、學(xué)會作適當(dāng)輔助線是解題關(guān)鍵.22、(1)證明見解析;(2)證明見解析;(3)24.【分析】(1)根據(jù)線段垂直平分線的性質(zhì)即可得出答案;(2)先判定AECF是平行四邊形,根據(jù)對角線垂直,即可得出答案;(3)根據(jù)勾股定理求出DE的值,根據(jù)“菱形的面積等于對角線乘積的一半”計算即可得出答案.【詳解】(1)證明:由圖可知,又∵,∴,∴;解:(2)由(1)知:∴四邊形是平行四邊形,又∵∴是菱形;(3)在中,∴;【點睛】本題考查的是菱形,難度適中,需要熟練掌握菱形的判定以及菱形面積的公式.23、(1)a=6;(2);(3)1【解析】(1)把A的坐標(biāo)代入直線解析式求a;(2)把求出的A點坐標(biāo)代入反比例解析式中求k,從而得解析式;求B點坐標(biāo),結(jié)合A點坐標(biāo)求面積.【詳解】解:(1)將A(﹣2,a)代入y=﹣x+4中,得:a=﹣(﹣2)+4,所以a=6(2)由(1)得:A(﹣2,6)將A(﹣2,6)代入中,得到:,即k=﹣1所以反比例函數(shù)的表達(dá)式為:(3)如圖:過A點作AD⊥x軸于D;∵A(﹣2,6)∴AD=6在直線y=﹣x+4中,令y=0,得x=4∴B(4,0),即OB=4∴△AOB的面積S=OB×AD=×4×6=1.考點:反比例函數(shù)綜合題.24、(1)OE∥BC.理由見解析;(2)【分析】(1)連接OC,根據(jù)已知條件可推出,進(jìn)一步得出結(jié)論得以證明;(2)根據(jù)(1)的結(jié)論可得出∠E=∠BCD,對應(yīng)的正切值相等,可得出CE的值,進(jìn)一步計算出OE的值,在Rt△AFO中,設(shè)OF=3x,則AF=4x,解出x的值,繼而得出OF的值,從而可得出答案.【詳解】解:(1)OE∥BC.理由如下:連接OC,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCE=90,∴∠OCA+∠ECF=90,∵OC=OA,∴∠OCA=∠CAB.又∵∠CAB=∠E,∴∠OCA=∠E,∴∠E+∠ECF=90,∴∠EFC=180O-(∠E+∠ECF)=90.∴∠EFC=∠ACB=90,∴OE∥BC.(2)由(1)知,OE∥BC,∴∠E=∠BCD.在Rt△OCE中,∵AB=12,∴OC=6,∵tanE=tan∠BCD=,∴.∴OE2=OC2+CE2=62+82,∴OE=10又由(1)知∠EFC=90,∴∠AFO=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度重型壓路機買賣及維修保養(yǎng)合同3篇
- 2025年度企業(yè)自駕游租車合同二零二五年度專用4篇
- 2025年度個人智能健康監(jiān)測技術(shù)入股協(xié)議4篇
- 2025年個人住宅防水保溫一體化合同范本4篇
- 開店策劃指導(dǎo)的合同(2篇)
- 民營醫(yī)療服務(wù):穩(wěn)中求進(jìn)關(guān)注老齡化+供需錯配格局下的投資機會
- 二零二五版門窗行業(yè)綠色物流與倉儲服務(wù)合同4篇
- 網(wǎng)架鋼結(jié)構(gòu)施工方案
- 二零二五版智能門牌系統(tǒng)與物聯(lián)網(wǎng)技術(shù)合同4篇
- 公路預(yù)埋管線施工方案
- 2025年度版權(quán)授權(quán)協(xié)議:游戲角色形象設(shè)計與授權(quán)使用3篇
- 2024年08月云南省農(nóng)村信用社秋季校園招考750名工作人員筆試歷年參考題庫附帶答案詳解
- 防詐騙安全知識培訓(xùn)課件
- 心肺復(fù)蘇課件2024
- 2024年股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2024-2025學(xué)年江蘇省南京市高二上冊期末數(shù)學(xué)檢測試卷(含解析)
- 四川省名校2025屆高三第二次模擬考試英語試卷含解析
- 《城鎮(zhèn)燃?xì)忸I(lǐng)域重大隱患判定指導(dǎo)手冊》專題培訓(xùn)
- 湖南財政經(jīng)濟學(xué)院專升本管理學(xué)真題
- 考研有機化學(xué)重點
- 全國身份證前六位、區(qū)號、郵編-編碼大全
評論
0/150
提交評論