2022年浙江省蒼南縣巨人中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁
2022年浙江省蒼南縣巨人中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁
2022年浙江省蒼南縣巨人中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁
2022年浙江省蒼南縣巨人中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁
2022年浙江省蒼南縣巨人中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.2.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.3.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.4.已知集合,集合,則().A. B.C. D.5.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件6.有一改形塔幾何體由若千個正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.47.已知是邊長為的正三角形,若,則A. B.C. D.8.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.9.已知復(fù)數(shù)滿足,則()A. B. C. D.10.新聞出版業(yè)不斷推進供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一11.一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.12.已知集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則14.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.15.的展開式中的系數(shù)為__________.16.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對應(yīng)的向量分別是,,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點,直線與圓相交于、兩點,求的值.18.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)已知橢圓:的離心率為,右焦點為拋物線的焦點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)為坐標(biāo)原點,過作兩條射線,分別交橢圓于、兩點,若、斜率之積為,求證:的面積為定值.20.(12分)為增強學(xué)生的法治觀念,營造“學(xué)憲法、知憲法、守憲法”的良好校園氛圍,某學(xué)校開展了“憲法小衛(wèi)士”活動,并組織全校學(xué)生進行法律知識競賽.現(xiàn)從全校學(xué)生中隨機抽取50名學(xué)生,統(tǒng)計他們的競賽成績,已知這50名學(xué)生的競賽成績均在[50,100]內(nèi),并得到如下的頻數(shù)分布表:分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競賽成績在內(nèi)定義為“合格”,競賽成績在內(nèi)定義為“不合格”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān)?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學(xué)生中抽取5名學(xué)生,再從這5名學(xué)生中隨機抽取2名學(xué)生,求這2名學(xué)生競賽成績都合格的概率.參考公式及數(shù)據(jù):,其中.21.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數(shù)的取值范圍.22.(10分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當(dāng)內(nèi)角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.2.C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當(dāng)時,,在上單調(diào)遞減,當(dāng)時,,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當(dāng)時,,在遞減;當(dāng)時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.3.C【解析】

根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.4.A【解析】

算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.5.D【解析】

充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.6.A【解析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點睛】本小題主要考查正方體有關(guān)計算,屬于基礎(chǔ)題.7.A【解析】

由可得,因為是邊長為的正三角形,所以,故選A.8.B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學(xué)生的運算求解能力.9.A【解析】

由復(fù)數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復(fù)數(shù)的運算.屬于簡單題.10.C【解析】

通過圖表所給數(shù)據(jù),逐個選項驗證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.11.B【解析】

根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎(chǔ)題.12.C【解析】

解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】

先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標(biāo)函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【點睛】本題主要考查線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合,結(jié)合目標(biāo)函數(shù)的幾何意義是解決此類問題的基本方法.14.【解析】

由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.15.3【解析】

分別用1和進行分類討論即可【詳解】當(dāng)?shù)谝粋€因式取1時,第二個因式應(yīng)取含的項,則對應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€因式取時,第二個因式應(yīng)取含的項,則對應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點睛】本題考查二項式定理中具體項對應(yīng)系數(shù)的求解,屬于基礎(chǔ)題16.【解析】試題分析:由坐標(biāo)系可知考點:復(fù)數(shù)運算三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1):,:;(2)【解析】

(1)消去參數(shù)求得直線的普通方程,將兩邊同乘以,化簡求得圓的直角坐標(biāo)方程.(2)求得直線的標(biāo)準(zhǔn)參數(shù)方程,代入圓的直角坐標(biāo)方程,化簡后寫出韋達定理,根據(jù)直線參數(shù)的幾何意義,求得的值.【詳解】(1)消去參數(shù),得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標(biāo)方程為;(2)經(jīng)檢驗點在直線上,可轉(zhuǎn)化為①,將①式代入圓的直角坐標(biāo)方程為得,化簡得,設(shè)是方程的兩根,則,,∵,∴與同號,由的幾何意義得.【點睛】本小題主要考查參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用直線參數(shù)的幾何意義求解距離問題,屬于中檔題.18.(1)證明見詳解;(2)【解析】

(1)取中點,根據(jù),利用線面垂直的判定定理,可得平面,最后可得結(jié)果.(2)利用建系,假設(shè)長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結(jié)果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所以(2)假設(shè),由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標(biāo)系,如圖設(shè)平面的一個法向量為則令,所以則直線與平面所成角的正弦值為【點睛】本題考查線面垂直、線線垂直的應(yīng)用,還考查線面角,學(xué)會使用建系的方法來解決立體幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.19.(1);(2)見解析【解析】

(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當(dāng)與軸垂直時,設(shè)直線的方程為:,與橢圓聯(lián)立求得的坐標(biāo),通過、斜率之積為列方程可得的值,進而可得的面積;當(dāng)與軸不垂直時,設(shè),,的方程為,與橢圓方程聯(lián)立,利用韋達定理和、斜率之積為可得,再利用弦長公式求出,以及到的距離,通過三角形的面積公式求解.【詳解】(1)拋物線的焦點為,,,,,,橢圓方程為;(2)(?。┊?dāng)與軸垂直時,設(shè)直線的方程為:代入得:,,,解得:,;(ⅱ)當(dāng)與軸不垂直時,設(shè),,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【點睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關(guān)系,考查韋達定理的應(yīng)用,考查了學(xué)生的計算能力,是中檔題.20.(1)見解析;(2)【解析】

(1)補充完整的列聯(lián)表如下:合格不合格合計高一新生121426非高一新生18624合計302050則的觀測值,所以有的把握認(rèn)為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān).(2)抽取的5名學(xué)生中競賽成績合格的有名學(xué)生,記為,競賽成績不合格的有名學(xué)生,記為,從這5名學(xué)生中隨機抽取2名學(xué)生的基本事件有:,共10種,這2名學(xué)生競賽成績都合格的基本事件有:,共3種,所以這2名學(xué)生競賽成績都合格的概率為.21.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點分段討論法把函數(shù)改寫成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結(jié)合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當(dāng)時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當(dāng)時等號成立)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論