




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.62.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.33.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.4.設函數(shù)滿足,則的圖像可能是A. B.C. D.5.若雙曲線:繞其對稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或6.在原點附近的部分圖象大概是()A. B.C. D.7.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結果是()A. B.C. D.8.若,則實數(shù)的大小關系為()A. B. C. D.9.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.310.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或11.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿足()A. B. C. D.12.已知集合,,若,則()A.或 B.或 C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.某種賭博每局的規(guī)則是:賭客先在標記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.14.函數(shù)在上的最小值和最大值分別是_____________.15.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.16.已知向量,,若,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調(diào)查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數(shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現(xiàn)手機公司測試部門預算的測試經(jīng)費為10萬元,試問預算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.18.(12分)已知函數(shù).(1)當時,解關于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.19.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.20.(12分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結果及表格數(shù)據(jù),建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數(shù)量的預報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.21.(12分)以直角坐標系的原點為極點,軸的非負半軸為極軸,且兩坐標系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標方程:(1)求曲線的極坐標方程;(2)若直線與曲線交于、兩點,求的最大值.22.(10分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)定義,表示出數(shù)列的通項并等于2020.結合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當?shù)闹悼梢詾?;即?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.2.B【解析】
根據(jù)極值點處的導數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經(jīng)檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導數(shù)極值的性質(zhì)以及利用導數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.3.A【解析】
設直線為,用表示出,,求出,令,利用導數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設直線為,則,,而滿足,那么設,則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數(shù)的最小值是關鍵,屬于中檔題.4.B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數(shù),選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.5.C【解析】
由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學思想.6.A【解析】
分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數(shù)的定義域為,定義域關于原點對稱,,則函數(shù)為奇函數(shù),排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.7.B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結果,故選:B.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.8.A【解析】
將化成以為底的對數(shù),即可判斷的大小關系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構造對數(shù)函數(shù),結合對數(shù)的單調(diào)性可判斷大??;若真數(shù)相同,則結合對數(shù)函數(shù)的圖像或者換底公式可判斷大??;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.9.C【解析】
由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數(shù),綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數(shù),設(a),則(a)由導數(shù)的應用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學思想方法,屬難度較大的題型.10.A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.11.D【解析】
首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應找一個中間數(shù),通過它實現(xiàn)大小關系的傳遞,屬于中檔題.12.B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.二、填空題:本題共4小題,每小題5分,共20分。13.20.2【解析】
分別求出隨機變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計算得解.【詳解】設a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點睛】此題考查隨機變量及其分布,關鍵在于準確求出隨機變量取值的概率,根據(jù)公式準確計算期望和方差.14.【解析】
求導,研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導數(shù)在函數(shù)最值的求解中的應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題15.【解析】
計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點睛】本題考查了向量模的范圍,意在考查學生的計算能力,利用三角函數(shù)的有界性是解題的關鍵.16.10【解析】
根據(jù)垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)預算經(jīng)費不夠測試完這100顆芯片,理由見解析【解析】
(1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評測分數(shù)的平均數(shù);(2)先求出每顆芯片的測試費用的數(shù)學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數(shù)為(萬分)(2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率.設每顆芯片的測試費用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費用的數(shù)學期望為(元),因為,所以顯然預算經(jīng)費不夠測試完這100顆芯片.【點睛】本題主要考查頻率分布直方圖的平均數(shù)的計算,考查離散型隨機變量的數(shù)學期望的計算,意在考查學生對這些知識的理解掌握水平.18.(1);(2).【解析】
(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據(jù)絕對值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當時,,則當時,由得,,解得;當時,恒成立;當時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當時,①式等號成立,即.又因為,②當時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.19.(1)證明見解析;(2).【解析】
(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因為,為中點,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,則,,,,,.設平面的法向量,則,即,令,則;設平面的法向量,則,即,令,則,所以.故銳二面角的余弦值為.【點睛】本題考查證明線面垂直,解題時注意線面垂直與線線垂直的相互轉(zhuǎn)化.考查求二面角,求空間角一般是建立空間直角坐標系,用向量法易得結論.20.(1)作圖見解析;更適合(2)(3)預報值為245【解析】
(1)由散點圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 糖果企業(yè)戰(zhàn)略定位與規(guī)劃考核試卷
- 熱電聯(lián)產(chǎn)系統(tǒng)安全性與穩(wěn)定性分析考核試卷
- 縫紉機市場營銷策略考核試卷
- 2025年分銷產(chǎn)品合同協(xié)議范本
- 2025某商業(yè)綜合體租賃合同
- 2025標準貨物買賣合同范本匯編
- 如何制定職能戰(zhàn)略
- 二零二五版單位招聘委托書委托招聘書
- 地區(qū)貨物運輸合同二零二五年
- 二零二五版機動車典當質(zhì)押合同
- SH/T 1673-1999工業(yè)用環(huán)己烷
- GB/T 9661-1988機場周圍飛機噪聲測量方法
- GB 29541-2013熱泵熱水機(器)能效限定值及能效等級
- FZ/T 07019-2021針織印染面料單位產(chǎn)品能源消耗限額
- 重癥醫(yī)學科各項規(guī)章制度匯編
- 社會組織培訓概述課件
- 春節(jié)作文優(yōu)秀課件
- 三角函數(shù)的應用論文Word版
- 農(nóng)業(yè)創(chuàng)業(yè)風險控制與防范培訓課件
- 生物制造國內(nèi)外狀況課件
- 幼兒園大班數(shù)學口算練習題可打印
評論
0/150
提交評論