




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
杭州電子科技大學(xué)畢業(yè)設(shè)計(論文)外文文獻翻譯畢設(shè)計論文)題目家用紙杯成型機設(shè)計翻譯題目對紙杯成型機桶形凸輪的優(yōu)化研究信息工程學(xué)院機械設(shè)計制造機器自動化指導(dǎo)教師巢炎畢設(shè)計論文)題目家用紙杯成型機設(shè)計翻譯題目對紙杯成型機桶形凸輪的優(yōu)化研究信息工程學(xué)院機械設(shè)計制造機器自動化指導(dǎo)教師巢炎對紙杯成型機桶形凸輪的優(yōu)化研究摘要1紙杯成型機一分鐘最多可以生產(chǎn)140個紙杯。如果生產(chǎn)率提高,使凸輪的接觸力增加,會產(chǎn)生更多的振動。因此,找一個減少凸輪振動的方法是有必要的。槍管凸輪的輪廓線是通過使用多體動力學(xué)模型去優(yōu)化。優(yōu)化的目標是使?jié)L子與凸輪之間發(fā)生的接觸力最小。使用優(yōu)化的凸輪進行了實驗。對比目前的利率進行優(yōu)化率較高的生產(chǎn)減振。關(guān)鍵字:紙杯;凸輪;多體動力學(xué);優(yōu)化;接觸力1簡介紙杯的需求迅速增加由于他們在保護環(huán)境方面的便利性和有效性.為了滿足需求,目前的生產(chǎn)力也應(yīng)該要增加。然而,簡單地增加生產(chǎn)率的結(jié)果在機器的振動床上,當(dāng)機器受到震動床的影響,會產(chǎn)生有缺陷的紙杯。這是一個嚴重的問題。圖1顯示當(dāng)前的紙杯成型機。目前的機器每分鐘可生產(chǎn)140個紙杯。如果生產(chǎn)率增加,回使每個凸輪磨損得很快,使凸輪不得不更換。紙杯是在紙杯成型機轉(zhuǎn)塔中形成,七輥指數(shù)是連接到轉(zhuǎn)塔的。該凸輪使?jié)L子凸輪旋轉(zhuǎn)移動,所以轉(zhuǎn)塔也是轉(zhuǎn)動的。接觸力發(fā)生的凸輪與滾輪之間。紙杯成型機運行一段時間后,由于有接觸力所以磨損發(fā)生在桶凸輪和滾子的表面。然后,振動和噪聲大大增加,需要更換凸輪和滾輪。在這一領(lǐng)域的研究已廣泛。伊佩克調(diào)查磨損機制的變化與凸輪軸的磨損的表面形貌。該凸輪表面的變化沿接觸表面的磨損機理H】。提出了一種模擬彭內(nèi)斯特的變速凸輪致動器。該致動器是一個凸輪移動銷根據(jù)規(guī)定的運動規(guī)律。在換擋仿真,接觸力和磨損行為進行了比較⑵??≌J為,凸輪的磨損是由滾子和套筒之間的接觸力引起的。對圓柱凸輪的磨損點幾乎與多體動力學(xué)模型的接觸力大點保持一致.[3].。曉優(yōu)化使用一個新的多項式樣條曲線和B樣條凸輪驅(qū)動發(fā)動機的凸輪輪廓曲線。分析定義的優(yōu)化問題是一種獨特的凸輪機構(gòu)⑷。新提出了一種運用相對速度設(shè)計圓柱凸輪的形狀的方法。局部坐標用相對速度的方法得出,桶凸輪1旭賢基姆韓國水原亞洲大學(xué)的博士生TaeWonpark水原亞洲大學(xué)機械工程學(xué)院的一名教授。的形狀是由CAD程序創(chuàng)建⑸?;烽_發(fā)了凸輪的形狀設(shè)計程序。用來參數(shù)輸入程序的凸輪輪廓數(shù)據(jù)點的計算。然后,數(shù)據(jù)被轉(zhuǎn)換成一個三維CAD模型⑹。暢作運動分析的一般框架對分度凸輪機構(gòu)的幾何設(shè)計。螺旋理論是用來描述凸輪結(jié)構(gòu)的機構(gòu)和運動方程的推導(dǎo)[7]。圖1紙杯成型機。然而,不建議用一個解決方案去減少接觸力。這些研究沒有驗證所設(shè)計的凸輪的性能。對紙杯成型加工,需要一個優(yōu)化的筒凸輪輪廓減少接觸力的方法。結(jié)果可用于驗證所提出的方法的可靠性。在這項研究中,每個凸輪型線優(yōu)化減少了滾子與凸輪之間的接觸力[8,9]。一個多體動力學(xué)模型,用亞當(dāng)斯的計算接觸力來創(chuàng)造。選擇設(shè)計參數(shù),顯著影響響應(yīng)變量的靈敏度分析,采用PlackettBurman設(shè)計表進行。然后,根據(jù)中心復(fù)合實驗設(shè)計表進行。其次,利用響應(yīng)面分析,二階遞歸模型的功能,它提供對設(shè)計參數(shù)和響應(yīng)變量之間的關(guān)系估計信息。對模型的估計函數(shù)的可靠性進行了驗證通過方差分析(ANOVA)的方法。最后,序列二次規(guī)劃(SQP)方法被用來找到設(shè)計變量,使模型的函數(shù)值滿足線性或非線性約束條件[10-13]。為了驗證該優(yōu)化方法的可靠性,建立了紙杯成型機的多體仿真模型。該凸輪和電流和優(yōu)化系統(tǒng)的輥之間的接觸力比較。此外,采用一個桶形凸輪的CAM原型試驗。對紙杯成型機電流和優(yōu)化系統(tǒng)在床的振動進行比較。2.動態(tài)分析2.1動態(tài)分析模型紙杯成型機的動態(tài)模型的建立分析了圓柱凸輪和采用多體動力學(xué)分析軟件亞當(dāng)斯,如圖2所示的輥之間的接觸力。在一個紙杯成型機的索引驅(qū)動器是一個旋轉(zhuǎn)或停止連接各生產(chǎn)工藝。該指數(shù)是由凸輪驅(qū)動操作。動態(tài)模型是由24部分組成的。連接,驅(qū)動彈簧和接觸模型中定義的。該模型有一個總22自由度。表1提供了對動態(tài)模型的信息。對圓柱凸輪三維模型,利用逆向工程技術(shù)建立.圖3顯示了逆向工程的程序。在這個過程中,真正的產(chǎn)品是用激光掃描儀,其中,在這項研究中,是一種非接觸式測量的激光探針。大約1000點,提出由線連接并轉(zhuǎn)化為在3DCAD程序進行三維實體模型的表面2.2接觸力分析俊認為凸輪磨損由于凸輪與滾輪之間的接觸力[3。圖5顯示分析結(jié)果的接觸力在滾子與凸輪之間。在三部分,接觸力大大增加。圖6顯示了當(dāng)軋輥孔型的圓柱凸輪導(dǎo)槽。第一點說明進入導(dǎo)向槽輥;第二指示輥通過轉(zhuǎn)動部分;和最后指示逃生槽輥。三穿點重合的地方,接觸力大大增加。在這三個部分凸輪磨損非常嚴重。磨損不僅發(fā)生在槽的整個表面而且發(fā)生在凹槽的幾點。因此,接觸力可的凸輪磨損的一個非常重要的因素。部分剛體24共同點外卷16平移7固定的1驅(qū)動器1力彈簧14接觸點21自由度22表1.動態(tài)模型的信息Etamvl圖2.紙杯成型機的多體動力學(xué)模型5:DnkiHanr^dwl-Fig.3.利用三維激光掃描儀的圓柱凸輪反求工程程序■I3■*凡取由#1由C4TRPH^410五eIQfl-Q向距離凸輪滾子幾何形狀變量結(jié)果凸輪曲線無量綱數(shù)X輥和指標滾子數(shù)X從從凸輪中心水平向距離X滾子半徑O軋輥凸度的角XContsidFotcm<R:ioll&r0^1>SG-OO-I-S1.-BS向距離凸輪滾子幾何形狀變量結(jié)果凸輪曲線無量綱數(shù)X輥和指標滾子數(shù)X從從凸輪中心水平向距離X滾子半徑O軋輥凸度的角XContsidFotcm<R:ioll&r0^1>SG-OO-I-S1.-BSTiirrns-亡"U]-_LA.1一了圖5.分析結(jié)果滾子和凸輪之間的接觸力圖7.參數(shù)從凸輪中心Z向距離半徑指數(shù)'、■圖6.磨損的凸輪..點表2優(yōu)化研究從從凸輪中心ZX滾子高O變量最?。?1)電流(0)最大(+1)滾子半徑12.731.7538.1滾子高度15.87538.144.45半徑指數(shù)180.0203.0206.5表3確定優(yōu)化設(shè)計的因素3優(yōu)化響應(yīng)面分析法作為優(yōu)化方法。該方法可用于在設(shè)計時參數(shù)的連續(xù)值。響應(yīng)函數(shù)是建立在假定的實驗結(jié)果的基礎(chǔ)上,對設(shè)計參數(shù),減少響應(yīng)函數(shù)的值是通過使用一個最小的算法。3.1設(shè)計的因素和水平接觸力的磨損的重要因素,并對凸輪的形狀密切相關(guān)。優(yōu)化的目標函數(shù)是確定滾子與凸輪之間的接觸力。接觸力的峰值選擇最小化。表2顯示的凸輪和滾子值幾何位移的設(shè)計因素。那是可以改變的設(shè)計選擇的因素考慮到當(dāng)前系統(tǒng)的結(jié)構(gòu)和其他部分的干擾。和改進的正弦曲線提供最佳的性能考慮的力傳遞效率仍然使用。如表2所示,滾筒的半徑和高度及半徑變化的指數(shù)。確定設(shè)計因素通過工程討論了這三個參數(shù)。表3給出了滾子的高度和半徑及被設(shè)置為設(shè)計因素指標的半徑。圖7顯示了需要確定的圓柱凸輪的最佳形狀參數(shù)。3.2響應(yīng)面分析。設(shè)計因素的正交數(shù)組創(chuàng)建。十五組實驗,基于正交陣列三個設(shè)計因素。表4顯示實驗的響應(yīng),這是凸輪與滾輪之間的最大接觸力。實驗結(jié)果的基礎(chǔ)上,響應(yīng)面分析法推導(dǎo)出的響應(yīng)函數(shù),并利用統(tǒng)計分析的方法和系統(tǒng)性能的設(shè)計因素之間的數(shù)學(xué)關(guān)系。當(dāng)有許多設(shè)計因素,二次回歸模型一般是作為響應(yīng)函數(shù)和系統(tǒng)性能的設(shè)計因素之間的關(guān)系的非線性。在這項研究中,中心復(fù)合設(shè)計表包括中心點和軸點使用2水平因子實驗來估計模型的功能。根據(jù)研究結(jié)果,二次回歸模型函數(shù)使用最小二乘法推導(dǎo)。在這項研究中得到的回歸函數(shù)表示為:]-=—了”+網(wǎng)知0艮+63520母—148果-21^600^+514切占「+739202/4-74670耳無+23140^/r-193190^.⑴Y:桶凸輪與滾輪之間的接觸力R:滾子半徑HR:高輥ri:半徑指數(shù)為了驗證模型的函數(shù),方差分析的實現(xiàn)。表5顯示了方差分析表的大小的變化是,①自由度和V的平均平方,F(xiàn)0值從獲得的實驗結(jié)果和F(0.01)是一個確定的值在參考根據(jù)水平和設(shè)計因素的數(shù)量。如表5所示,F(xiàn)0大于F(0.01)。因此,該模型函數(shù)有顯著性水平百分之1的可靠性水平。因此,該模型可用于為目標函數(shù),因為估計的模型函數(shù)能非常好的表達設(shè)計因素和系統(tǒng)性之間的關(guān)系。為了獲得的設(shè)計因素最小化目標函數(shù)值,采用SQP方法。SQP是一種有效的優(yōu)化算法,得到一個函數(shù)的最低值給定出兩個以上的設(shè)計因素和非線性約束條件。表6顯示了設(shè)計因素最小化目標函數(shù)值。次數(shù)滾子半徑滾子高度滾子半徑響應(yīng)1-1-1-1131332-1-11111353-11-112402
4-111974951-1-199300961-11125041711-11197735811151555790002918610-1.2160049652111.21600534829120-1.2160220181301.21601065981400-1.21611287115001.21652623表4.確定優(yōu)化設(shè)計的因素s4VFOSSR1.92E+12J;51764.43SSE11SST2.ME+12Table5.ANOVAtable.設(shè)計參數(shù)值(mm)滾子半徑23.8125
滾子高度25.4半徑指數(shù)2047225表6優(yōu)化設(shè)計變量。電流電流電流滾子半徑(mm)31.7523.8125-26.05滾子高度(mm)38.125.4-33.33半徑指數(shù)(mm203204.7255+0.85凸輪高度(mm)1491490凸輪高度(mm)269222-17.47接觸力的峰值平均(N)29.1865.184-82.24接觸力的均方根值(N)5.5411.309-76.37表7.估計系統(tǒng)的優(yōu)化結(jié)果…diiTDfltCamAngle(JplimifedCaraAmfHe圖8.優(yōu)化后的凸輪和指數(shù)位移圖
RollerCMRalterOETimeisec'i圖9.當(dāng)前的和優(yōu)化的系統(tǒng)之間的接觸力的比較4.優(yōu)化驗證4.1動態(tài)模型RollerCMRalterOETimeisec'i驗證是否已進行了優(yōu)化,利用動態(tài)模型優(yōu)化的凸輪模型的建立。以及電流與優(yōu)化模型的接觸力比較。圖8顯示了當(dāng)前的和優(yōu)化的凸輪模型和指數(shù)單元的位移圖。優(yōu)化后的凸輪和分度裝置以及當(dāng)前凸輪的痕跡。七輥接觸力在圖9凸輪與滾輪之間的接觸力峰值相比顯著降低在優(yōu)化后。設(shè)計值的變化,對凸輪的大小和接觸力影響如表7所示。該凸輪變得更輕比桶形凸輪體積減小約17.47%。圓柱凸輪和滾子之間接觸壓力的峰值下降約82.24%。此外,接觸力的均方根值降低約76.37%。因此,這次優(yōu)化用動態(tài)模型的進行了驗證。4.2實驗一桶的CAM原型是基于優(yōu)化結(jié)果制作。在紙杯成型機床的加速度測量實驗驗證了優(yōu)化結(jié)果。圖10顯示了1到6點的加速度的測量。實驗進行了五次是可靠的。獲得的測量值是平均值。紙杯成型機的當(dāng)前的和優(yōu)化的凸輪的加速度在圖10進行了比較。優(yōu)化后的凸輪平均加速度降低約17%,因此,對著圓柱凸輪進行了好的優(yōu)化。結(jié)論進行優(yōu)化以減少凸輪與滾輪之間的接觸力的紙杯成型機的設(shè)計。接觸力是通過使用凸輪動態(tài)模型和指數(shù)單元分析,這是對紙杯成型機操作的一部分。通過工程的探討,為優(yōu)化確定了他們的價值觀的設(shè)計因素。滾筒的半徑和高度及半徑進行了優(yōu)化指標。對圓柱凸輪的形狀也根據(jù)滾筒的半徑和高度及半徑的優(yōu)化指標。為了驗證在這項研究中使用優(yōu)化的組件的減振,對接觸力進行了分析。接觸力降低的動態(tài)模型與優(yōu)化的組件。此外,通過實驗測定了紙杯成型機床的加速度。加速度在優(yōu)化系統(tǒng)中下降??傊?,通過優(yōu)化輥,指數(shù)和凸輪,讓紙杯成型機可以在一個高速,低磨損的環(huán)境中工作。圖11.對機械振動的比較參考[1]R.IpekandB.Selcuk,,凸輪軸的干磨損形貌,材料研究學(xué)報,168(2005)373-379.。⑵E.Pennestri,R.Stefanelli,P.P.ValentiniandL.Vita,凸輪曲線的動態(tài)仿真驅(qū)動變速,DETC'04程序(2004)。[3]K.-J.Jun,T.-W.Park,K.-YCheongandY-G.Kim,,在紙杯中利用多體動力學(xué)模型成型機因素造成的凸輪磨損研究,J.MST,24(3)(2010)361-367。[4]H.XiaoandJ.W.Zu,一種新的凸輪驅(qū)動凸輪型線優(yōu)化,機械科學(xué)與技術(shù)學(xué)報,23(2009)2592-2602。[5]J.H.Shin,S.W.Kim,D.W.KangandH.E.Yoon對凸輪的相對速度的設(shè)計研究,kspe學(xué)報,19(8)(2002)47-54。[6]W.H.KimandT.W.Park公園,一個凸輪設(shè)計方案一杯成型機的發(fā)展,ksme學(xué)報,35(4)(2011)433-438。[7]乙Chang,C.Xu,T.Pan,L.WangandX.Zhang,對分度凸輪機構(gòu)一般框架的幾何設(shè)計,機械原理,44(2009)2079-2084。[8]R.L.Norton,凸輪的設(shè)計和制造手冊,工業(yè)出版社有限公司,紐約。[9]F.YChen,力學(xué)和凸輪機構(gòu)的設(shè)計,科學(xué)出版社,紐約。[10]S.-P.Jung,T.-W.Park,K.-J.Jun,J.-W.Yoon,S.-H.LeeandW.-S.Chung一個優(yōu)化方法研究了響應(yīng)面分析,多體系統(tǒng)jmst,23(2009)950-953。[11]S.-P.Jung,T.-W.Park,K.-J.Jun,J.-W.YoonandW.-S.Chung使用實驗設(shè)計,彈簧的優(yōu)化設(shè)計,ijpem,10(4)(2009)77-83.。[12]S.Park,,實驗設(shè)計的理解,minyoungsa(2005)。【13】G.N.Vanderplaats,應(yīng)用工程設(shè)計的數(shù)值優(yōu)化技術(shù),McGraw-Hill(1984)2009年在亞洲大學(xué)旭賢基姆收到他的機械工程理學(xué)學(xué)士。目前,他是一名韓國水原亞洲大學(xué)的博士生。他的興趣是研究該地區(qū)的多體系統(tǒng),優(yōu)化和計算機輔助工程。TaeWonpark得到來自國立首爾大學(xué)的機械工程學(xué)士學(xué)位。他接著從愛荷華大學(xué)獲得了碩士和博士學(xué)位。他目前是在韓國。水原亞洲大學(xué)機械工程學(xué)院的一名教授。Studyofoptimizationofthebarrelcaminapaper-cup-formingmachinefWookHyeonKim1andTaeWonPark2,*AbstractApapercupformingmachinecanproduceamaximumofabout140papercupsaminute.Iftherateofproductionisincreasedtoimproveproductivity,thecontactforceinthebarrelcamincreases,producingmorevibration.Therefore,amethodforreductionofcamvibrationisneeded.Theprofileofthebarrelcamisoptimizedbyusingamultibodydynamicsmodel.Theobjectiveoftheoptimizationistominimizethecontactforcethatoccursbetweentherollersandthebarrelcam.Anexperimentiscarriedoutusingtheoptimizedbarrelcam.Thereductionofvibrationathigherratesofproductionthanthecurrentratesvalidatedtheoptimization.Keywords:Paper-cup;Barrelcam;Multi-bodydynamics;Optimization;ContactforceIntroductionThedemandforpapercupsisincreasingrapidlyduetotheirconvenienceandeffectivenessinprotectingtheenvironment.Tosatisfythedemand,currentproductivityalsoshouldbeincreased.However,simplyincreasingproductivitywouldresultinvibrationatthebedonthemachine,whichisaseriousproblem.Whenthemachineisalsoaffectedbythevibrationonthebed,defectivepapercupsareproduced.Fig.1showsthecurrentpapercupformingmachine.Thecurrentmachinecanproduce140papercupsperminute.Iftheproductivityisincreased,thebarrelcamwillwearoutveryquicklyandthebarrelcamwillhavetobechanged.Thepapercupisformedontheturretinthepapercupformingmachine,andanindexwithsevenrollersisconnectedtotheturret.Thebarrelcammakestherollersmoveasthecamrotates,sotheturretalsorotates.Contactforceoccursbetweenthebarrelcamandtherollers.Afterthepapercupformingmachineoperatesforalongtime,wearoccursonthesurfacesofthebarrelcamandtherollerbecauseofthecontactforce.Thenvibrationandnoiseincreasegreatly,requiringreplacementofthebarrelcamandtherollersshouldbechanged.Researchinthisfieldhasbeenextensive.Ipekinvestigatedthevariationofthewearmechanismandwornsurfaceprofileofthecamshaft.Thewearmechanismofthecamsurfacechangesalongthecontactsurface[1].Pennestripresentedasimulationofthecamactuatorofarobotizedgearbox.Theactuatorisabarrelcamwhichmovesapinaccordingtoaprescribedmotionlaw.Inthegearshiftingsimulation,thecontactforcesandwearactionarecompared[2].Junsuggestedthatbarrelcamweariscausedbythecontactforcebetweenrollerandbarrelcam.Thewearspotofthebarrelcamalmostcoincideswiththepointoflargecontactforceinthemulti-bodydynamicsmodel[3].XiaooptimizedthecamprofileforanewcamdriveengineusingageneralpolynomialsplineandB-spline.Auniquecammechanismisanalyzedtodefinetheoptimizationproblem[4].Shinproposedamethodfordesigningtheshapeofthebarrelcambyusingrelativevelocity.Localcoordinatesarederivedusingtherelativevelocitymethod,andtheshapeofthebarrelcamiscreatedbytheCADprogram[5].Kimdevelopedabarrelcamshapedesignprogram.Parametersareinputtotheprogramandthepointdataofthecamprofilearecalculated.Then,thedataareconvertedtoa3DsolidCADmodel[6].Changpresentedageneralframeworkforkinematicanalysisandgeometrydesignoftheindexingcammechanism.Screwtheoryisappliedtodescribethestructureofthecammechanism,andkinematicequationsarederived[7].Fig.1.Papercupformingmachine.However,asolutiontodecreasethecontactforcehasnotbeensuggested.Andthosestudiesdidnotverifytheperformanceofthedesignedbarrelcam.Forthepapercupformingmachined,amethodtooptimizethebarrelcamprofiletodecreasethecontactforceisneeded.Theresultcanbeusedtoverifyforthereliabilityofthesuggestedmethod.Inthisstudy,thebarrelcamprofileisoptimizedtominimizethecontactforcebetweentherollersandthebarrelcam[8,9].AmultibodydynamicmodeliscreatedusingADAMStocalculatethecontactforce.Tochoosethedesignparameters,whichsignificantlyaffecttheresponsevariables,sensitivityanalysisisperformedbyusingthePlackett-Burmandesigntable.Then,experimentsarecarriedoutaccordingtothecentralcompositedesigntable.Next,usingresponsesurfaceanalysis,thesecondorderrecursivemodelfunction,whichprovidesinformationontherelationshipbetweenthedesignparametersandtheresponsevariables,isestimated.Thereliabilityoftheestimatedmodelfunctionisverifiedaccordingtotheanalysisvariance(ANOVA)method.Finally,thesequentialquadraticprogramming(SQP)methodisusedtofindthevaluesofthedesignvariablesthatminimizethemodelfunctionandsatisfythelinearornonlinearconstraintconditions[10-13].Toverifythereliabilityoftheoptimizationprocedure,amulti-bodysimulationmodelofthepaper-cupformingmachineiscreated.Thecontactforcebetweenthebarrelcamandtherollersofthecurrentandtheoptimizedsystemiscompared.Inaddition,anexperimentusingaprototypeofthebarrelcamisperformed.Thevibrationonthebedofthepaper-cupformingmachinebetweenthecurrentandtheoptimizedsystemiscompared.DynamicanalysisDynamicanalysismodelAdynamicmodelofthepaper-cupformingmachineiscreatedtoanalyzethecontactforcebetweenthebarrelcamandtherollersbyusingamulti-bodydynamicanalysisprogramADAMSasshowninFig.2.Theindexdriveinapapercupformingmachineisacomponentthatrotatesorstopstoconnecteachproductionprocess.Theindexdriveisoperatedbythebarrelcam.Thedynamicmodeliscomposedof24parts.Joint,driverspringandcontactaredefinedinthemodel.ThemodelhasatotalDOFof22.Table1providestheinformationonthedynamicmodel.A3Dmodelofthebarrelcamiscreatedbyusingreverse-engineering.Fig.3showsthereverse-engineeringprocedure.Inthisprocedure,therealproductismeasuredusingalaserscanner,which,inthisstudy,isanon-contactmeasurementlaserprobe.Itmeasuresabout1000points,andpointsareconnectedbyalineandconvertedtoasurfacetomakea3Dsolidmodelinthe3DCADprogram.ContactforceanalysisJunsuggestedthatthecamwearsoutduetothecontactforcebetweenthecamandtherollers[3].Fig.5showstheanalysisresultofthecontactforcebetweenarollerandthebarrelcam.Inthreesections,thecontactforceincreasesgreatly.Fig.6showsthemomentwhenarollerpassesbytheguidegrooveofthebarrelcam.Thefirstspotindicatestherollerenteringtheguidegroove;thesecondindicatestherollerpassingthroughtherotationalsection;andthelastindicatesrollerescapingtheguidegroove.Thethreewearspotscoincidewiththepartswherethecontactforceincreasesgreatly.Thebarrelcamiswornoutverymuchinthesethreeparts.Thewearoftenoccursnotonthewholesurfaceofthegroovebutatsomepointsofthegroove.Therefore,thecontactforcecanbeaveryimportantfactorofthebarrelcamwear.PA1T9J-4KzwhmitsTrnji^-lnticnLn.1711Sprit*142ITable1.Informationofdynamicmodel.HbgETiirlcngniFig.2.Multi-bodydynamicmodelofthepapercupformingmachine.J=l>miLiJ33i*?dvl-Fig.3.Procedureofreverseengineeringofthebarrelcamusing3Dlaserscanner.Fig.4.Comparisonofcamandindexangle.ContsclFarce(RDllerDI)Fig.5.Analysisresultofcontactforcebetweenrollerandbarrelcam.Fig.6.Wearspotsofthebarrelcam.Fig.7.Parameterofrollerandindex.Rj-viilrXczuii&roilerofrollers-XX-clirecnoi]distmicfromctillerXrioijdisraiicec^xliceiiieryJZ-clii-trcti.oiifiroa.licenterXofiaide-TcHfEdrolleroKjid.iu.'sol^i-o-LleroCTcrwuofroJJeiXTable2.Investigationfortheoptimization頓-1)Ciina;r(0iRadiusofrclkr12.7381HeightofrallerIS.87538.144.45RadiusofmcleK180.0203.0灑iTable3.Determineddesignfactorsfortheoptimization.OptimizationTheresponsesurfaceanalysisisusedastheoptimizationmethod.Thismethodcanbeusedwhenthedesignparametershavecontinuousvalues.Theresponsefunctionispresumedbasedontheexperimentalresults,andthevaluesofthedesignparametersthatminimizetheresponsefunctionarefoundbyusingaminimalalgorithm.3.1DesignfactorsandlevelThecontactforceisanimportantfactorofthewear,andiscloselyrelatedtotheshapeofthebarrelcam.Theobjectivefunctionoftheoptimizationistodeterminetheoptimalshapeofthebarrelcamthatminimizesthecontactforcebetweentherollersandthebarrelcam.Thepeakvalueofthecontactforceischosentobeminimized.Table2showsthedesignfactorsofthedisplacementofthecamandgeometricvaluesoftheroller.Thedesignfactorsthatcanbechangedareselectedconsideringthestructureofthecurrentsystemandtheinterferenceofotherparts.Andthemodifiedsinecurvegivingthebestperformanceconsideringtheforcetransferefficiencyisstillused.AsshowninTable2,theradiusandheightoftherollerandtheradiusoftheindexarechanged.Thesethreeparametersaredeterminedasdesignfactorsthroughengineeringdiscussion.Table3presentstheheightandradiusoftherollerandtheradiusoftheindexwhicharesetasdesignfactor.Fig.7showstheparametersrequiredtodeterminetheoptimalshapeofthebarrelcam.ResponsesurfaceanalysisAnorthogonalarrayofthedesignfactorsiscreated.Fifteenexperimentsarecarriedoutbasedontheorthogonalarrayofthreedesignfactors.Table4showstheresponseoftheexperiments,whichisthepeakcontactforcebetweenthebarrelcamandtheroller.Basedontheexperimentalresults,theresponsesurfaceanalysismethoddeducestheresponsefunction,amathematicalcorrelationbetweenthedesignfactorsandsystemperformancesbyusingastatisticalmethod.Whentherearemanydesignfactors,aquadraticregressionmodelis,generallyusedastheresponsefunctionbecauseofthenonlinearityoftherelationbetweenthedesignfactorsandsystemperformances.Inthisstudy,thecentralcompositedesigntableincludingthecentralpointandtheaxialpointisusedin2-levelfactorexperimentstoestimatethemodelfunction.Basedontheresult,aquadraticregressivemodelfunctionisderivedusingthemethodofleastsquares.Theregressivemodelfunctionobtainedinthestudyisexpressedas]-=—79。+犯頒R,+63泗風(fēng)—MS熬°、—215&)叫+74670^+23140^4190.⑴Y:ContactforcebetweenthebarrelcamandtherollersrR:RadiusofrollerhR:HeightofrollerrI:RadiusofindexToverifythemodelfunction,theanalysisofvarianceisimplemented.Table5showstheANOVATable:Sisthesizeofchange,①thgreioffreedom,andVthemeansquare.F0isavalueobtainedfromtheexperimentresultsandF(0.01)isavaluedeterminedinthereferenceaccordingtothelevelandnumberofdesignfactors.AsshowninTable5,F0isgreaterthanF(0.01).Therefore,themodelfunctionhasalevelofreliabilitywithin1percentofthesignificancelevel.Therefore,themodelfunctioncanbeusedasanobjectivefunction,becausetheestimatedmodelfunctioncanexpresstherelationbetweenthedesignfactorsandsystemperformanceverywell.Toobtainthevaluesofthedesignfactorsthatminimizetheobjectivefunction,theSQPmethodisused.TheSQPisanefficientoptimalalgorithmthatobtainsthelowestvaluesofafunctiongivenmorethantwodesignfactorsandnonlinearconstraintconditions.Table6showsthevaluesofthedesignfactorsthatminimizetheobjectivefunction.
No.of玲perimentFtadhisofrollerHeighTofrollerRadiusofrollerR.C51XM15C(N)1-1-1-L131332-1-L]111353-11-L124024-11197495t-1-199300961-11125D41711-11197735S1115155579oQ02912610-1.216O04-9652111.316aQ12o-1.21602201813o1.216010659S14o0-1216112S7115o01.21652623Table4.Determineddesignfactorsfortheoptimization.S中~VFOF(0.01)SSEL1.9ZE-rl23(5.39E+1154.7d443SSE1.2&E+11111.17E-10SST2.C4E-1214Table5.ANOVAtable.DesignPirainererValue(iiiin)R^li痙ofrollff238125Heightofreller'25.4R^dimofindex204.7225Table6.Optimizeddesignvariables.CimctirQprmuzedRjitcofelian^e(na)R^drLE'iofroller(iimih317523.S125?2605HeightofiDllei'(turn)384¥」■Radiusofindex(nimF203204.7225F-85Rjirliu^ofcam(iiini)1491490H^igJiTofcam(null)2692^2-1747A^-erjiffeofpeAk瞬hieofcotiticrfi&rce(IT)29ASG5,184■82.24RAIS睥1gofcoiatactfeace(N-^5,5411^309-7637Table7.Estimatedresultoftheoptimizedsystem.soi-'-QurircntC-^irn朗邵電□pnmizedAngle50tlE;p-」_Fig.8.Displacementdiagramoftheoptimizedbarrelcamandindex.Rc-lterO-1Tie.|vw=}RcmiaiD4Rdiw03IC^'F?r*t卜…“Qpnn—』.11J1...Fegsystem.TimafEwnrvni—■4!^aajQiCurri-nl:E_?Opdrri=3E-dJ一*-J113?3□na.Ll....4.1?-□.isS.-Ol14Tims05C5WWC?rrwl??…Stini—dlTim?Fig.9.ComparisonofcontactforcebetweencurrentandoptimizedOptimizationverificationDynamicmodelToverifywhethertheoptimizationhasbeencarriedoutwell,adynamicmodeliscreatedusingtheoptimizedbarrelcammodel.Andthecontactforceofthecurrentandtheoptimizedmodeliscompared.Fig.8showsthedisplacementdiagramofthecurrentandtheoptimizedbarrelcammodelandindexunit.Theoptimizedbarrelcamandtheindexunitwelltracesofthecurrentcam.ThecontactforcesofsevenrollersarecomparedinFig.9.Thepeakvalueofthecontactforceremarkablydecreasesbetweenthebarrelcamandtherollersafteroptimization.Thechangeofdesignvalue,thesizeofthebarrelcamandthecontactforceareshowninTable7.Thebarrelcambecomeslighterasthevolumeofthebarrelcamdecreasesabout17.47%.Andthepeakvalueofthecontactforcebetweenthebarrelcamandtherollerdecreasesabout82.24%.Also,theRMSvalueofthecontactforcedecreasesabout76.37%.Therefore,theoptimizationusingthedynamicmodelisverified.ExperimentAprototypeofthebarrelcamismanufacturedbasedontheresultoftheoptimization.Theaccelerationatthebedofthepapercupformingmachineismeasuredbyexperimenttoverifytheresultoftheoptimization.Fig.10showsthepoints1to6whereaccelerationismeasured.Theexperimentisdonefivetimesforreliability.Theaverageofthemeasuredvaluesisobtained.TheaccelerationofthepapercupformingmachinewiththecurrentandtheoptimizedbarrelcamiscomparedinFig.10.Theaverageaccelerationdecreasesabout17%afteroptimization.Therefore,thebarrelcamiswelloptimized.Fig.10.Measurepointofthevibration.ITuftIFig.11.ComparisonITuftIFig.11.Comparisonofvibrationonthemachine.ConclusionThedesignofthepaper-cupformingmachinewasoptimizedtodecreasethecontactforcebetweenthebarrelcamandtherollers.Thecontactforcewasanalyzedbyusingadynamicmodelofthebarrelcamandtheindexunit,whichisanoperatingpartofthepapercupformingmachine.Throughengineeringdiscussion,thedesignfactorsandtheirvaluesweredeterminedfortheoptimization.Theradiusandheightoftherollerandtheradiusoftheindexwereoptimized.Andtheshapeofthebarrelcamwasalsooptimizedaccordingtotheradiusandheightoftherollerandtheradiusoftheindex.Toverifythereductionofvibrationusingtheoptimizedcomponentsinthisstudy,thecontactforcewasanalyzed.Thecontactforcesignificantlydecreasedinthedynamicmodelwiththeoptimizedcomponents.Inaddition,theaccelerationofthebedofthepap
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 武俠格斗競技場行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 機器人自動化打磨方案行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025年鉗型表項目合作計劃書
- 2025年計算機網(wǎng)絡(luò)設(shè)備項目建議書
- 2025年極軌氣象衛(wèi)星接收處理系統(tǒng)項目建議書
- 2025年度食堂員工健康管理與保險合同
- 2025年度無產(chǎn)權(quán)車位使用權(quán)轉(zhuǎn)讓及車位增值服務(wù)合作協(xié)議
- 2025年度車輛過戶轉(zhuǎn)讓及二手車交易信息發(fā)布合同
- 二零二五年度勞動合同法新規(guī)解讀及企業(yè)員工合同解除補償協(xié)議
- 二零二五年老舊小區(qū)改造安置房購買合同
- 快速康復(fù)外科理念在圍術(shù)期應(yīng)用
- 人工智能訓(xùn)練師(中級數(shù)據(jù)標注員)理論考試題庫大全(含答案)
- 臨床護理技術(shù)操作常見并發(fā)癥的預(yù)防與處理規(guī)范
- 《建筑施工塔式起重機安裝、使用、拆卸安全技術(shù)規(guī)程》
- 2024年江蘇連云港灌云縣水務(wù)集團有限公司招聘筆試參考題庫含答案解析
- 3×36000KVA錳硅合金直流爐1×6300KVA 精煉爐及配套 1×36000KVA富錳渣爐建設(shè)項目環(huán)評可研資料環(huán)境影響
- 間質(zhì)性肺炎患者的護理健康評估
- 【海信電器員工流失現(xiàn)狀調(diào)查及其原因和完善策略10000字】
- 國資公司招聘總經(jīng)理試題
- 天津醫(yī)院運營分析報告
- 呼吸科健康宣教五分鐘
評論
0/150
提交評論