




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.2.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()3.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發(fā)現,該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.4.若數列滿足且,則使的的值為()A. B. C. D.5.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.6.已知函數的一條切線為,則的最小值為()A. B. C. D.7.設a,b,c為正數,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件8.已知等比數列滿足,,則()A. B. C. D.9.某地區(qū)高考改革,實行“3+2+1”模式,即“3”指語文、數學、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A.8種 B.12種 C.16種 D.20種10.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.811.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件12.正項等差數列的前和為,已知,則=()A.35 B.36 C.45 D.54二、填空題:本題共4小題,每小題5分,共20分。13.設平面向量與的夾角為,且,,則的取值范圍為______.14.已知,為虛數單位,且,則=_____.15.某學校高一、高二、高三年級的學生人數之比為,現按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.16.已知函數的最大值為3,的圖象與y軸的交點坐標為,其相鄰兩條對稱軸間的距離為2,則三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的導函數的兩個零點為和.(1)求的單調區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.18.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.19.(12分)超級病菌是一種耐藥性細菌,產生超級細菌的主要原因是用于抵抗細菌侵蝕的藥物越來越多,但是由于濫用抗生素的現象不斷的發(fā)生,很多致病菌也對相應的抗生素產生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細菌,需要檢驗血液是否為陽性,現有n()份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為次,假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;(2)現取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為.(i)試運用概率統(tǒng)計的知識,若,試求p關于k的函數關系式;(ii)若,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求k的最大值.參考數據:,,,,20.(12分)某商場為改進服務質量,隨機抽取了200名進場購物的顧客進行問卷調查.調查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男4040女8040(1)是否有97.5%的把握認為顧客購物體驗的滿意度與性別有關?(2)為答謝顧客,該商場對某款價格為100元/件的商品開展促銷活動.據統(tǒng)計,在此期間顧客購買該商品的支付情況如下:支付方式現金支付購物卡支付APP支付頻率10%30%60%優(yōu)惠方式按9折支付按8折支付其中有1/3的顧客按4折支付,1/2的顧客按6折支付,1/6的顧客按8折支付將上述頻率作為相應事件發(fā)生的概率,記某顧客購買一件該促銷商品所支付的金額為,求的分布列和數學期望.附表及公式:.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:.過點的直線:(為參數)與曲線相交于,兩點.(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求實數的值.22.(10分)在平面直角坐標系中,點是直線上的動點,為定點,點為的中點,動點滿足,且,設點的軌跡為曲線.(1)求曲線的方程;(2)過點的直線交曲線于,兩點,為曲線上異于,的任意一點,直線,分別交直線于,兩點.問是否為定值?若是,求的值;若不是,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
求得點坐標,由此求得直線的方程,聯立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設,則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎題.2.D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.3.D【解析】
設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.4.C【解析】因為,所以是等差數列,且公差,則,所以由題設可得,則,應選答案C.5.A【解析】
由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.6.A【解析】
求導得到,根據切線方程得到,故,設,求導得到函數在上單調遞減,在上單調遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數在上單調遞減,在上單調遞增,故.故選:.【點睛】本題考查函數的切線問題,利用導數求最值,意在考查學生的計算能力和綜合應用能力.7.B【解析】
根據不等式的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】解:,,為正數,當,,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合不等式的性質是解決本題的關鍵.8.B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.9.C【解析】
分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數,即可求出結果.【詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C【點睛】本題主要考查兩個計數原理,熟記其計數原理的概念,即可求出結果,屬于??碱}型.10.B【解析】
利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.11.B【解析】
由數量積的定義可得,為實數,則由可得,根據共線的性質,可判斷;再根據判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數量積的應用.12.C【解析】
由等差數列通項公式得,求出,再利用等差數列前項和公式能求出.【詳解】正項等差數列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數列的性質與求和公式,屬于中檔題.解等差數列問題要注意應用等差數列的性質()與前項和的關系.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據已知條件計算出,結合得出,利用基本不等式可得出的取值范圍,利用平面向量的數量積公式可求得的取值范圍,進而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.14.4【解析】
解:利用復數相等,可知由有.15.【解析】
根據分層抽樣的定義建立比例關系即可得到結論.【詳解】設抽取的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.16.【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數的圖像與性質.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)單調遞增區(qū)間是,單調遞減區(qū)間是和;(2)最大值是.【解析】
(1)求得,由題意可知和是函數的兩個零點,根據函數的符號變化可得出的符號變化,進而可得出函數的單調遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結論知,函數的極小值為,進而得出,解出、、的值,然后利用導數可求得函數在區(qū)間上的最大值.【詳解】(1),令,因為,所以的零點就是的零點,且與符號相同.又因為,所以當時,,即;當或時,,即.所以,函數的單調遞增區(qū)間是,單調遞減區(qū)間是和;(2)由(1)知,是的極小值點,所以有,解得,,,所以.因為函數的單調遞增區(qū)間是,單調遞減區(qū)間是和.所以為函數的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數在區(qū)間上的最大值是.【點睛】本題考查利用導數求函數的單調區(qū)間與最值,考查計算能力,屬于中等題.18.(1)見解析(2)【解析】
(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(1)(2)(i)(,且).(ii)最大值為4.【解析】
(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,利用古典概型、排列組合求解即可;(2)(i)由已知得,的所有可能取值為1,,則可求得,,即可得到,進而由可得到p關于k的函數關系式;(ii)由可得,推導出,設(),利用導函數判斷的單調性,由單調性可求出的最大值【詳解】(1)設恰好經過2次檢驗能把陽性樣本全部檢驗出來為事件A,則,∴恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率為(2)(i)由已知得,的所有可能取值為1,,,,,若,則,則,,,∴p關于k的函數關系式為(,且)(ii)由題意知,得,,,,設(),則,令,則,∴當時,,即在上單調增減,又,,,又,,,∴k的最大值為4【點睛】本題考查古典概型的概率公式的應用,考查隨機變量及其分布,考查利用導函數判斷函數的單調性20.(1)有97.5%的把握認為顧客購物體驗的滿意度與性別有關;(2)67元,見解析.【解析】
(1)根據表格數據代入公式,結合臨界值即得解;(2)的可能取值為40,60,80,1,根據題意依次計算概率,列出分布列,求數學期望即可.【詳解】(1)由題得,所以,有97.5%的把握認為顧客購物體驗的滿意度與性別有關.(2)由題意可知的可能取值為40,60,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度租船運輸費用及船舶交易中介服務協(xié)議
- 2025年度知識產權授權保證金協(xié)議
- 2025年度私家車個人車輛抵押融資合同
- 二零二五年度勞務班組退場及新能源項目設備回收協(xié)議
- 二零二五年度機床轉讓與知識產權保護協(xié)議
- 2025年度生物科技企業(yè)研發(fā)人員勞動用工協(xié)議書
- 二零二五年度手房貸款買賣合同(含裝修款分期支付)
- 二零二五年度古井買賣合同范本全新解讀
- 二零二五年度科室承包責任書及考核協(xié)議
- 幼兒園與社區(qū)聯合舉辦親子活動的合作協(xié)議
- 部編版小學五年級下冊《道德與法治》全冊教案含教學計劃
- 8款-組織架構圖(可編輯)
- 廣告公司業(yè)務價格表
- 防水卷材熱老化試驗檢測記錄表
- GB∕T 7758-2020 硫化橡膠 低溫性能的測定 溫度回縮程序(TR 試驗)
- 四年級下冊綜合實踐活動教案 跟著節(jié)氣去探究 全國通用
- 培智康復課教案模板(共7篇)
- 領導干部道德修養(yǎng)1
- Chapter-1-生物信息學簡介
- 中國郵政銀行“一點一策”方案介紹PPT課件
- 青果巷歷史街區(qū)改造案例分析
評論
0/150
提交評論