版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,則下列結(jié)論:①a、b同號;②當x=1和x=3時,函數(shù)值相等;③4a+b=1;④當y=﹣2時,x的值只能取1;⑤當﹣1<x<5時,y<1.其中,正確的有()A.2個 B.3個 C.4個 D.5個2.如圖,矩形OABC有兩邊在坐標軸上,點D、E分別為AB、BC的中點,反比例函數(shù)y=(x<0)的圖象經(jīng)過點D、E.若△BDE的面積為1,則k的值是()A.﹣8 B.﹣4 C.4 D.83.二次函數(shù)y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關(guān)于x的一元二次方程x2–2x–1–t=0(t為實數(shù))在–1<x<4的范圍內(nèi)有實數(shù)解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<74.在實數(shù)﹣,0.21,,,,0.20202中,無理數(shù)的個數(shù)為()A.1 B.2 C.3 D.45.如果關(guān)于x的分式方程有負數(shù)解,且關(guān)于y的不等式組無解,則符合條件的所有整數(shù)a的和為()A.﹣2 B.0 C.1 D.36.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學記數(shù)法表示應為()A. B. C. D.7.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm8.小明在九年級進行的六次數(shù)學測驗成績?nèi)缦拢▎挝唬悍郑?6、82、91、85、84、85,則這次數(shù)學測驗成績的眾數(shù)和中位數(shù)分別為()A.91,88 B.85,88 C.85,85 D.85,84.59.函數(shù)y=ax+b與y=bx+a的圖象在同一坐標系內(nèi)的大致位置是()A. B.C. D.10.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.11.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°12.已知M,N,P,Q四點的位置如圖所示,下列結(jié)論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.14.如圖,某數(shù)學興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.15.某校為了了解學生雙休日參加社會實踐活動的情況,隨機抽取了100名學生進行調(diào)查,并繪成如圖所示的頻數(shù)分布直方圖.已知該校共有1000名學生,據(jù)此估計,該校雙休日參加社會實踐活動時間在2~2.5小時之間的學生數(shù)大約是全體學生數(shù)的________(填百分數(shù)).16.分解因式:2x2﹣8=_____________17.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數(shù)為____.18.因式分解:4x2y﹣9y3=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B、C兩地的距離(結(jié)果保留整數(shù))(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)20.(6分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)21.(6分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結(jié)果即可).22.(8分)如圖,在平面直角坐標系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點,OA=4,點D為拋物線的頂點,并且直線y=kx+b與該拋物線相交于A、B兩點,與y軸相交于點C,B點的橫坐標是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點,設P點的橫坐標是t,△PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當PB∥CD時,點Q是直線AB上一點,若∠BPQ+∠CBO=180°,求Q點坐標.23.(8分)數(shù)學不僅是一門學科,也是一種文化,即數(shù)學文化.數(shù)學文化包括數(shù)學史、數(shù)學美和數(shù)學應用等多方面.古時候,在某個王國里有一位聰明的大臣,他發(fā)明了國際象棋,獻給了國王,國王從此迷上了下棋,為了對聰明的大臣表示感謝,國王答應滿足這位大臣的一個要求.大臣說:“就在這個棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、?!ぁぁぁぁぁひ恢坏降诟?”“你真傻!就要這么一點米粒?”國王哈哈大笑.大臣說:“就怕您的國庫里沒有這么多米!”國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請同學們閱讀以下解答過程就知道答案了.設,則即:事實上,按照這位大臣的要求,放滿一個棋盤上的個格子需要粒米.那么到底多大呢?借助計算機中的計算器進行計算,可知答案是一個位數(shù):,這是一個非常大的數(shù),所以國王是不能滿足大臣的要求.請用你學到的方法解決以下問題:我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?計算:某中學“數(shù)學社團”開發(fā)了一款應用軟件,推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知一列數(shù):,其中第一項是,接下來的兩項是,再接下來的三項是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項和為的正整數(shù)冪.請直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.24.(10分)在數(shù)學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關(guān)系嗎?小林選擇了其中一對變量,根據(jù)學習函數(shù)的經(jīng)驗,對它們之間的關(guān)系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設B,E兩點間的距離為xcm,E,F(xiàn)兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關(guān)數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;(4)結(jié)合畫出的函數(shù)圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為cm.25.(10分)“大美濕地,水韻鹽城”.某校數(shù)學興趣小組就“最想去的鹽城市旅游景點”隨機調(diào)查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學生總?cè)藬?shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B“的學生人數(shù).26.(12分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設BP=t.(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).27.(12分)一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)二次函數(shù)的性質(zhì)和圖象可以判斷題目中各個小題是否成立.【詳解】由函數(shù)圖象可得,
a>1,b<1,即a、b異號,故①錯誤,
x=-1和x=5時,函數(shù)值相等,故②錯誤,
∵-=2,得4a+b=1,故③正確,
由圖象可得,當y=-2時,x=1或x=4,故④錯誤,
由圖象可得,當-1<x<5時,y<1,故⑤正確,
故選A.【點睛】考查二次函數(shù)圖象與系數(shù)的關(guān)系,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.2、B【解析】
根據(jù)反比例函數(shù)的圖象和性質(zhì)結(jié)合矩形和三角形面積解答.【詳解】解:作,連接.∵四邊形AHEB,四邊形ECOH都是矩形,BE=EC,∴故選B.【點睛】此題重點考查學生對反比例函數(shù)圖象和性質(zhì)的理解,熟練掌握反比例函數(shù)圖象和性質(zhì)是解題的關(guān)鍵.3、B【解析】
利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數(shù)值的范圍為﹣2≤y<7,由于關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,然后利用函數(shù)圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,當﹣1<x<4時,﹣2≤y<7,而關(guān)于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數(shù))在﹣1<x<4的范圍內(nèi)有實數(shù)解可看作二次函數(shù)y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數(shù)的性質(zhì)、拋物線與x軸的交點、二次函數(shù)與一元二次方程,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程是解題的關(guān)鍵.4、C【解析】在實數(shù)﹣,0.21,,,,0.20202中,根據(jù)無理數(shù)的定義可得其中無理數(shù)有﹣,,,共三個.故選C.5、B【解析】
解關(guān)于y的不等式組,結(jié)合解集無解,確定a的范圍,再由分式方程有負數(shù)解,且a為整數(shù),即可確定符合條件的所有整數(shù)a的值,最后求所有符合條件的值之和即可.【詳解】由關(guān)于y的不等式組,可整理得∵該不等式組解集無解,∴2a+4≥﹣2即a≥﹣3又∵得x=而關(guān)于x的分式方程有負數(shù)解∴a﹣4<1∴a<4于是﹣3≤a<4,且a為整數(shù)∴a=﹣3、﹣2、﹣1、1、1、2、3則符合條件的所有整數(shù)a的和為1.故選B.【點睛】本題考查的是解分式方程與解不等式組,求各種特殊解的前提都是先求出整個解集,再在解集中求特殊解,了解求特殊解的方法是解決本題的關(guān)鍵.6、C【解析】分析:在實際生活中,許多比較大的數(shù),我們習慣上都用科學記數(shù)法表示,使書寫、計算簡便.解答:解:根據(jù)題意:2500000=2.5×1.故選C.7、B【解析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側(cè)時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據(jù)題目中所告訴的AB和BC的大小關(guān)系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.8、D【解析】試題分析:根據(jù)眾數(shù)的定義:出現(xiàn)次數(shù)最多的數(shù),中位數(shù)定義:把所有的數(shù)從小到大排列,位置處于中間的數(shù),即可得到答案.眾數(shù)出現(xiàn)次數(shù)最多的數(shù),85出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)是:85,把所有的數(shù)從小到大排列:76,82,84,85,85,91,位置處于中間的數(shù)是:84,85,因此中位數(shù)是:(85+84)÷2=84.5,故選D.考點:眾數(shù),中位數(shù)點評:此題主要考查了眾數(shù)與中位數(shù)的意義,關(guān)鍵是正確把握兩種數(shù)的定義,即可解決問題9、B【解析】
根據(jù)a、b的符號進行判斷,兩函數(shù)圖象能共存于同一坐標系的即為正確答案.【詳解】分四種情況:①當a>0,b>0時,y=ax+b的圖象經(jīng)過第一、二、三象限,y=bx+a的圖象經(jīng)過第一、二、三象限,無選項符合;②當a>0,b<0時,y=ax+b的圖象經(jīng)過第一、三、四象限;y=bx+a的圖象經(jīng)過第一、二、四象限,B選項符合;③當a<0,b>0時,y=ax+b的圖象經(jīng)過第一、二、四象限;y=bx+a的圖象經(jīng)過第一、三、四象限,B選項符合;④當a<0,b<0時,y=ax+b的圖象經(jīng)過第二、三、四象限;y=bx+a的圖象經(jīng)過第二、三、四象限,無選項符合.故選B.【點睛】此題考查一次函數(shù)的圖象,關(guān)鍵是根據(jù)一次函數(shù)y=kx+b的圖象有四種情況:①當k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限;②當k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限;③當k<0,b>0時,函數(shù)y=kx+b的圖象經(jīng)過第一、二、四象限;④當k<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限.10、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.11、B【解析】
先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點睛】本題考查了多邊形內(nèi)角與外角,關(guān)鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).12、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1:1【解析】
根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點,∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學生的推理能力.14、25【解析】試題解析:由題意15、.【解析】
用被抽查的100名學生中參加社會實踐活動時間在2~2.5小時之間的學生除以抽查的學生總?cè)藬?shù),即可得解.【詳解】由頻數(shù)分布直方圖知,2~2.5小時的人數(shù)為100﹣(8+24+30+10)=28,則該校雙休日參加社會實踐活動時間在2~2.5小時之間的學生數(shù)大約是全體學生數(shù)的百分比為100%=28%.故答案為:28%.【點睛】本題考查了頻數(shù)分布直方圖以及用樣本估計總體,利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.一般來說,用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.16、2(x+2)(x﹣2)【解析】
先提公因式,再運用平方差公式.【詳解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【點睛】考核知識點:因式分解.掌握基本方法是關(guān)鍵.17、22°【解析】
由AE∥BD,根據(jù)平行線的性質(zhì)求得∠CBD的度數(shù),再由對頂角相等求得∠CDB的度數(shù),繼而利用三角形的內(nèi)角和等于180°求得∠C的度數(shù).【詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【點睛】本題考查了平行線的性質(zhì),對頂角相等及三角形內(nèi)角和定理.熟練運用相關(guān)知識是解決問題的關(guān)鍵.18、y(2x+3y)(2x-3y)【解析】
直接提取公因式y(tǒng),再利用平方差公式分解因式即可.【詳解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、B、C兩地的距離大約是6千米.【解析】
過B作BD⊥AC于點D,在直角△ABD中利用三角函數(shù)求得BD的長,然后在直角△BCD中利用三角函數(shù)求得BC的長.【詳解】解:過B作于點D.在中,千米,中,,千米,千米.答:B、C兩地的距離大約是6千米.【點睛】此題考查了方向角問題.此題難度適中,解此題的關(guān)鍵是將方向角問題轉(zhuǎn)化為解直角三角形的知識,利用三角函數(shù)的知識求解.20、見解析【解析】
以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【詳解】解:如圖,點E即為所求作的點.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.21、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.22、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】
(1)根據(jù)題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據(jù)B的橫坐標可求B點坐標,把A,B坐標代入直線解析式,可求k,b(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,設出P點坐標,可求出N點坐標,即可以用t表示S.(3)由PB∥CD,可求P點坐標,連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,根據(jù)P的坐標,可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據(jù)拋物線的對稱性可知R在對稱軸上.設Q點坐標,根據(jù)△BOR∽△PQS,可求Q點坐標.【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當x=﹣1時,y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數(shù)解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當x=t時,yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當x=﹣2時,y=4即D(﹣2,4),當x=0時,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當y=3時,x=﹣3,∴P(﹣3,3),連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC過點Q作QS⊥PN,垂足是S,∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,可求BR=,OR=2,設Q點的橫坐標是m,當x=m時y=m+4,∴SQ=m+3,PS=﹣m﹣1∴,解得m=﹣.當x=﹣時,y=,Q(﹣,).【點睛】本題考查二次函數(shù)綜合題、一次函數(shù)的應用、相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識,學會添加常用輔助線,構(gòu)造特殊四邊形解決問題.23、(1)3;(2);(3)【解析】
設塔的頂層共有盞燈,根據(jù)題意列出方程,進行解答即可.參照題目中的解題方法進行計算即可.由題意求得數(shù)列的每一項,及前n項和Sn=2n+1-2-n,及項數(shù),由題意可知:2n+1為2的整數(shù)冪.只需將-2-n消去即可,分別分別即可求得N的值【詳解】設塔的頂層共有盞燈,由題意得.解得,頂層共有盞燈.設,,即:.即由題意可知:20第一項,20,21第二項,20,21,22第三項,…20,21,22…,2n?1第n項,根據(jù)等比數(shù)列前n項和公式,求得每項和分別為:每項含有的項數(shù)為:1,2,3,…,n,總共的項數(shù)為所有項數(shù)的和為由題意可知:為2的整數(shù)冪,只需將?2?n消去即可,則①1+2+(?2?n)=0,解得:n=1,總共有,不滿足N>10,②1+2+4+(?2?n)=0,解得:n=5,總共有滿足,③1+2+4+8+(?2?n)=0,解得:n=13,總共有滿足,④1+2+4+8+16+(?2?n)=0,解得:n=29,總共有不滿足,∴【點睛】考查歸納推理,讀懂題目中等比數(shù)列的求和方法是解題的關(guān)鍵.24、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】
根據(jù)題意作圖測量即可.【詳解】(1)取點、畫圖、測量,得到數(shù)據(jù)為3.5故答案為:3.5(3)由數(shù)據(jù)得(4)當△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x所以,當(1)中圖象與直線y=x相交時,交點橫坐標即為BE的長,由作圖、測量可知x約為3.1.【點睛】本題為動點問題的函數(shù)圖象探究題,解得關(guān)鍵是按照題意畫圖測量,并將條件轉(zhuǎn)化成函數(shù)圖象研究.25、(1)40;(2)72;(3)1.【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調(diào)查的學生總?cè)藬?shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點的人數(shù)所占的百分比即可.【詳解】(1)被調(diào)查的學生總?cè)藬?shù)為8÷20%=40(人);(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年預購商品房合同3篇
- 2025年度oem服裝加工與品牌授權(quán)合同范本3篇
- 2024年標準版商品交易協(xié)議書版B版
- 2024年金融教育與普及項目合同3篇
- 2025年度特色餐廳品牌授權(quán)合作協(xié)議3篇
- 2024幼兒園清潔服務租賃合同
- 2024年離婚協(xié)議書規(guī)范格式3篇
- 2024年礦石物流承運協(xié)議標準模板版B版
- 2024購房合同樣書
- 2024年高頻交易系統(tǒng)開發(fā)與授權(quán)合同
- 2024年七年級語文上學期期末作文題目及范文匯編
- 云南省昆明市五華區(qū)2023-2024學年九年級上學期期末英語試卷+
- 2023年生產(chǎn)運營副總經(jīng)理年度總結(jié)及下一年計劃
- 2023年中考語文標點符號(頓號)練習(含答案)
- 施工圖審查招標文件范文
- 新課標人教版數(shù)學三年級上冊第八單元《分數(shù)的初步認識》教材解讀
- (人教版2019)數(shù)學必修第一冊 第三章 函數(shù)的概念與性質(zhì) 復習課件
- 布袋式除塵器制造工序檢驗規(guī)定
- 艾滋病、梅毒和乙肝檢測方法介紹及選擇
- 水資源稅納稅申報表附表
- MF47萬用表組裝與檢測教學教案
評論
0/150
提交評論