




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
BasicsofStudyDesignJaniceWeinbergScDAssistantProfessorofBiostatisticsBostonUniversitySchoolofPublicHealthBasicsofStudyDesignJaniceW1BasicsofStudyDesignBiasandvariabilityRandomization:whyandhow?Blinding:whyandhow?GeneralstudydesignsBasicsofStudyDesignBiasand2BiasandVariabilityTheclinicaltrialisconsideredtobethe“goldstandard”inclinicalresearchClinicaltrialsprovidetheabilitytoreducebiasandvariabilitythatcanobscurethetrueeffectsoftreatmentBiasaffectsaccuracyVariabilityaffectsprecisionBiasandVariabilityTheclinic3Bias:anyinfluencewhichactstomaketheobservedresultsnon-representativeofthetrueeffectoftherapy
Examples:healthierpatientsgiventreatmentA,sickerpatientsgiventreatmentBtreatmentAis“newandexciting”soboththephysicianandthepatientexpectbetterresultsonAManypotentialsourcesofbiasBias:anyinfluencewhichacts4Variability:highvariabilitymakesitmoredifficulttodiscerntreatmentdifferencesSomesourcesofvariabilityMeasurementinstrumentobserverBiologicwithinindividualsbetweenindividualsCannotalwayscontrolforallsources(andmaynotwantto)Variability:highvariability5Fundamentalprinciple
incomparingtreatmentgroups:GroupsmustbealikeinallimportantaspectsandonlydifferinthetreatmenteachgroupreceivesInpracticalterms,“comparabletreatmentgroups”means“alikeontheaverage”Fundamentalprinciple
incomp6Whyisthisimportant?IfthereisagroupimbalanceforanimportantfactorthenanobservedtreatmentdifferencemaybeduetotheimbalanceratherthantheeffectoftreatmentExample:DrugXversusplaceboforosteoporosisAgeisariskfactorforosteoporosisOldersubjectsareenrolledinDrugXgroupTreatmentgroupcomparisonwillbebiasedduetoimbalanceonageWhyisthisimportant?Ifthere7Howcanweensurecomparabilityoftreatmentgroups?WecannotensurecomparabilitybutrandomizationhelpstobalanceallfactorsbetweentreatmentgroupsIfrandomization“works”thengroupswillbesimilarinallaspectsexceptforthetreatmentreceivedHowcanweensurecomparabilit8RandomizationAllocationoftreatmentstoparticipantsiscarriedoutusingachancemechanismsothatneitherthepatientnorthephysicianknowinadvancewhichtherapywillbeassignedSimplestCase:eachpatienthasthesamechanceofreceivinganyofthetreatmentsunderstudyRandomizationAllocationoftre9SimpleRandomizationThinkoftossingacoineachtimeasubjectiseligibletoberandomizedHEADS: TreatmentATAILS: TreatmentBApproximately?willbeassignedtotreatmentsAandBRandomizationusuallydoneusingarandomizationscheduleoracomputerizedrandomnumbergeneratorSimpleRandomizationThinkoft10ProblemwithSimpleRandomization:Mayresultinsubstantialimbalanceineitheranimportantbaselinefactorand/orthenumberofsubjectsassignedtoeachgroupSolution:Useblockingand/orstratifiedrandomizationProblemwithSimpleRandomizat11BlockingExample:Ifwehavetwotreatmentgroups(AandB)equalallocation,andablocksizeof4,randomassignmentswouldbechosenfromtheblocks1)AABB 4)BABA2)ABAB 5)BAAB3)ABBA 6)BABABlockingensuresbalanceafterevery4thassignmentBlockingExample:Ifwehavetw12StratificationExampleToensurebalanceonanimportantbaselinefactor,createstrataandsetupseparaterandomizationscheduleswithineachstratumExample:ifwewantpreventanimbalanceonageinanosteoporosisstudy,firstcreatethestrata“<75years”and“75years”thenrandomizewithineachstratumseparatelyBlockingshouldbealsobeusedwithineachstratumStratificationExampleToensur13AlternativestoRandomizationRandomizationisnotalwayspossibleduetoethicalorpracticalconsiderationsSomealternatives:HistoricalcontrolsNon-randomizedconcurrentcontrolsDifferenttreatmentperphysicianSystematicalternationoftreatmentsSourcesofbiasforthesealternativesneedtobeconsideredAlternativestoRandomizationR14BlindingMaskingtheidentityoftheassignedinterventionsMaingoal:avoidpotentialbiascausedbyconsciousorsubconsciousfactorsSingleblind: patientisblindedDouble
blind: patientandassessing investigatorareblindedTriple
blind: committeemonitoring responsevariables(e.g. statistician)isalsoblindedBlindingMaskingtheidentityo15HowtoBlindTo“blind”patients,canuseaplaceboExamplespillofsamesize,color,shapeastreatmentshamoperation(anesthesiaandincision)foranginareliefshamdevicesuchasshamacupuncture
HowtoBlindTo“blind”patient16WhyShouldPatientsbeBlinded?Patientswhoknowtheyarereceivinganeworexperimentalinterventionmayreportmore(orless)sideeffectsPatientsnotonneworexperimentaltreatmentmaybemore(orless)likelytodropoutofthestudyPatientmayhavepreconceivednotionsaboutthebenefitsoftherapyPatientstrytogetwell/pleasephysiciansWhyShouldPatientsbeBlinded17Placeboeffect–responsetomedicalinterventionwhichresultsfromtheinterventionitself,notfromthespecificmechanismofactionoftheinterventionExample:FisherR.W.JAMA1968;203:418-419
46patientswithchronicsevereitchingrandomlygivenoneoffourtreatmentsHighitchingscore=moreitchingTreatment ItchingScore cyproheptadineHCI 27.6 trimeprazinetartrate 34.6 placebo 30.4 nothing 49.6Placeboeffect–responsetom18WhyShouldInvestigatorsbeBlinded?TreatingphysiciansandoutcomeassessinginvestigatorsareoftenthesamepeoplePossibilityofunconsciousbiasinassessingoutcomeisdifficulttoruleoutDecisionsaboutconcomitant/compensatorytreatmentareoftenmadebysomeonewhoknowsthetreatmentassignment“Compensatory”treatmentmaybegivenmoreoftentopatientsontheprotocolarmperceivedtobelesseffectiveWhyShouldInvestigatorsbeBl19CanBlindingAlwaysbeDone?Insomestudiesitmaybeimpossible(orunethical)toblindatreatmentmayhavecharacteristicsideeffectsitmaybedifficulttoblindthephysicianinasurgeryordevicestudySourcesofbiasinanun-blindedstudymustbeconsideredCanBlindingAlwaysbeDone?In20GeneralStudyDesignsManyclinicaltrialstudydesignsfallintothecategoriesofparallelgroup,dose-ranging,cross-overandfactorialdesignsTherearemanyotherpossibledesignsandvariationsonthesedesignsWewillconsiderthegeneralcasesGeneralStudyDesignsManyclin21GeneralStudyDesignsParallelgroupdesignsGeneralStudyDesignsParallel22GeneralStudyDesignsDose-RangingStudiesGeneralStudyDesignsDose-Rang23GeneralStudyDesignsCross-OverDesignsGeneralStudyDesignsCross-Ove24GeneralStudyDesignsFactorialDesignsGeneralStudyDesignsFactorial25Cross-OverDesignsSubjectsarerandomizedtosequencesoftreatments(AthenBorBthenA)Usesthepatientashis/herowncontrolOftena“wash-out”period(timebetweentreatmentperiods)isusedtoavoida“carryover”effect(theeffectoftreatmentinthefirstperiodaffectingoutcomesinthesecondperiod)Canhaveacross-overdesignwithmorethan2periodsCross-OverDesignsSubjectsare26Cross-OverDesignsAdvantage:treatmentcomparisonisonlysubjecttowithin-subjectvariabilitynotbetween-subjectvariabilityreducedsamplesizesDisadvantages:strictassumptionaboutcarry-overeffectsinappropriateforcertainacutediseases(whereaconditionmaybecuredduringthefirstperiod)dropoutsbeforesecondperiodCross-OverDesignsAdvantage:t27Cross-OverDesignsAppropriateforconditionsthatareexpectedtoreturntobaselinelevelsatthebeginningofthesecondperiodExamples:TreatmentofchronicpainComparisonofhearingaidsforhearinglossMouthwashtreatmentforgingivitisCross-OverDesignsAppropriate28FactorialDesignsAttemptstoevaluatetwointerventionscomparedtoacontrolinasingleexperiment(simplestcase)Animportantconceptforthesedesignsisinteraction(sometimescalledeffectmodification)Interaction:TheeffectoftreatmentAdiffersdependinguponthepresenceorabsenceofinterventionBandvice-versa.FactorialDesignsAttemptstoe29FactorialDesignsAdvantages:Ifnointeraction,canperformtwoexperimentswithlesspatientsthanperformingtwoseparateexperimentsCanexamineinteractionsifthisisofinterestDisadvantages:Addedcomplexitypotentialforadverseeffectsdueto“poly-pharmacy”FactorialDesignsAdvantages:30FactorialDesignsExample:Physician’sHealthStudyPhysiciansrandomizedto:aspirin(topreventcardiovasculardisease)beta-carotene(topreventcancer)aspirinandbeta-caroteneneither(placebo)Stampfer,Buring,Willett,Rosner,EberleinandHennekens(1985)The2x2factorialdesign:it’sapplicationtoarandomizedtrialofaspirinandcaroteneinU.S.physicians.Stat.inMed.9:111-116.FactorialDesignsExample:Phy31BasicsofStudyDesignJaniceWeinbergScDAssistantProfessorofBiostatisticsBostonUniversitySchoolofPublicHealthBasicsofStudyDesignJaniceW32BasicsofStudyDesignBiasandvariabilityRandomization:whyandhow?Blinding:whyandhow?GeneralstudydesignsBasicsofStudyDesignBiasand33BiasandVariabilityTheclinicaltrialisconsideredtobethe“goldstandard”inclinicalresearchClinicaltrialsprovidetheabilitytoreducebiasandvariabilitythatcanobscurethetrueeffectsoftreatmentBiasaffectsaccuracyVariabilityaffectsprecisionBiasandVariabilityTheclinic34Bias:anyinfluencewhichactstomaketheobservedresultsnon-representativeofthetrueeffectoftherapy
Examples:healthierpatientsgiventreatmentA,sickerpatientsgiventreatmentBtreatmentAis“newandexciting”soboththephysicianandthepatientexpectbetterresultsonAManypotentialsourcesofbiasBias:anyinfluencewhichacts35Variability:highvariabilitymakesitmoredifficulttodiscerntreatmentdifferencesSomesourcesofvariabilityMeasurementinstrumentobserverBiologicwithinindividualsbetweenindividualsCannotalwayscontrolforallsources(andmaynotwantto)Variability:highvariability36Fundamentalprinciple
incomparingtreatmentgroups:GroupsmustbealikeinallimportantaspectsandonlydifferinthetreatmenteachgroupreceivesInpracticalterms,“comparabletreatmentgroups”means“alikeontheaverage”Fundamentalprinciple
incomp37Whyisthisimportant?IfthereisagroupimbalanceforanimportantfactorthenanobservedtreatmentdifferencemaybeduetotheimbalanceratherthantheeffectoftreatmentExample:DrugXversusplaceboforosteoporosisAgeisariskfactorforosteoporosisOldersubjectsareenrolledinDrugXgroupTreatmentgroupcomparisonwillbebiasedduetoimbalanceonageWhyisthisimportant?Ifthere38Howcanweensurecomparabilityoftreatmentgroups?WecannotensurecomparabilitybutrandomizationhelpstobalanceallfactorsbetweentreatmentgroupsIfrandomization“works”thengroupswillbesimilarinallaspectsexceptforthetreatmentreceivedHowcanweensurecomparabilit39RandomizationAllocationoftreatmentstoparticipantsiscarriedoutusingachancemechanismsothatneitherthepatientnorthephysicianknowinadvancewhichtherapywillbeassignedSimplestCase:eachpatienthasthesamechanceofreceivinganyofthetreatmentsunderstudyRandomizationAllocationoftre40SimpleRandomizationThinkoftossingacoineachtimeasubjectiseligibletoberandomizedHEADS: TreatmentATAILS: TreatmentBApproximately?willbeassignedtotreatmentsAandBRandomizationusuallydoneusingarandomizationscheduleoracomputerizedrandomnumbergeneratorSimpleRandomizationThinkoft41ProblemwithSimpleRandomization:Mayresultinsubstantialimbalanceineitheranimportantbaselinefactorand/orthenumberofsubjectsassignedtoeachgroupSolution:Useblockingand/orstratifiedrandomizationProblemwithSimpleRandomizat42BlockingExample:Ifwehavetwotreatmentgroups(AandB)equalallocation,andablocksizeof4,randomassignmentswouldbechosenfromtheblocks1)AABB 4)BABA2)ABAB 5)BAAB3)ABBA 6)BABABlockingensuresbalanceafterevery4thassignmentBlockingExample:Ifwehavetw43StratificationExampleToensurebalanceonanimportantbaselinefactor,createstrataandsetupseparaterandomizationscheduleswithineachstratumExample:ifwewantpreventanimbalanceonageinanosteoporosisstudy,firstcreatethestrata“<75years”and“75years”thenrandomizewithineachstratumseparatelyBlockingshouldbealsobeusedwithineachstratumStratificationExampleToensur44AlternativestoRandomizationRandomizationisnotalwayspossibleduetoethicalorpracticalconsiderationsSomealternatives:HistoricalcontrolsNon-randomizedconcurrentcontrolsDifferenttreatmentperphysicianSystematicalternationoftreatmentsSourcesofbiasforthesealternativesneedtobeconsideredAlternativestoRandomizationR45BlindingMaskingtheidentityoftheassignedinterventionsMaingoal:avoidpotentialbiascausedbyconsciousorsubconsciousfactorsSingleblind: patientisblindedDouble
blind: patientandassessing investigatorareblindedTriple
blind: committeemonitoring responsevariables(e.g. statistician)isalsoblindedBlindingMaskingtheidentityo46HowtoBlindTo“blind”patients,canuseaplaceboExamplespillofsamesize,color,shapeastreatmentshamoperation(anesthesiaandincision)foranginareliefshamdevicesuchasshamacupuncture
HowtoBlindTo“blind”patient47WhyShouldPatientsbeBlinded?Patientswhoknowtheyarereceivinganeworexperimentalinterventionmayreportmore(orless)sideeffectsPatientsnotonneworexperimentaltreatmentmaybemore(orless)likelytodropoutofthestudyPatientmayhavepreconceivednotionsaboutthebenefitsoftherapyPatientstrytogetwell/pleasephysiciansWhyShouldPatientsbeBlinded48Placeboeffect–responsetomedicalinterventionwhichresultsfromtheinterventionitself,notfromthespecificmechanismofactionoftheinterventionExample:FisherR.W.JAMA1968;203:418-419
46patientswithchronicsevereitchingrandomlygivenoneoffourtreatmentsHighitchingscore=moreitchingTreatment ItchingScore cyproheptadineHCI 27.6 trimeprazinetartrate 34.6 placebo 30.4 nothing 49.6Placeboeffect–responsetom49WhyShouldInvestigatorsbeBlinded?TreatingphysiciansandoutcomeassessinginvestigatorsareoftenthesamepeoplePossibilityofunconsciousbiasinassessingoutcomeisdifficulttoruleoutDecisionsaboutconcomitant/compensatorytreatmentareoftenmadebysomeonewhoknowsthetreatmentassignment“Compensatory”treatmentmaybegivenmoreoftentopatientsontheprotocolarmperceivedtobelesseffectiveWhyShouldInvestigatorsbeBl50CanBlindingAlwaysbeDone?Insomestudiesitmaybeimpossible(orunethical)toblindatreatmentmayhavecharacteristicsideeffectsitmaybedifficulttoblindthephysicianinasurgeryordevicestudySourcesofbiasinanun-blindedstudymustbeconsideredCanBlindingAlwaysbeDone?In51GeneralStudyDesignsManyclinicaltrialstudydesignsfallintothecategoriesofparallelgroup,dose-ranging,cross-overandfactorialdesignsTherearemanyotherpossibledesignsandvariationsonthesedesignsWewillconsiderthegeneralcasesGeneralStudyDesignsManyclin52GeneralStudyDesignsParallelgroupdesignsGeneralStudyDesignsParallel53GeneralStudyDesignsDose-RangingStudiesGeneralStudyDesignsDose-Rang54GeneralStudyDesignsCross-OverDesignsGeneralStudyDesignsCross-Ove55GeneralStudyDesignsFactorialDesignsGeneralStudyDesignsFactorial56Cross-OverDesignsSubjectsarerandomizedtosequencesoftreatments(AthenBorBthenA)Usesthepatientashis/herowncontrolOftena“wash-out”period(timebetweentreatmentperiods)isusedtoavoida“carryover”effect(theeffectoftreatmentinthefirstperiodaffectingoutcomesinthesecondperiod)Canhave
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國鋁合金橫百葉窗簾行業(yè)投資前景及策略咨詢報告
- 炸雞店的營銷季節(jié)策略
- 中長發(fā)疏松了怎么辦?專家告訴你增發(fā)秘籍
- 元旦夢幻之旅淡藍插畫童話
- 幼兒元旦故事會插畫與分享
- 2025至2030中國新型城鎮(zhèn)化信貸行業(yè)市場發(fā)展分析及產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國威士忌酒行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 寶寶聽故事過年趣事
- 德克士的餐飲技術創(chuàng)新
- 三年級數(shù)學幾百幾十加減幾百幾十自我檢測訓練題大全附答案
- 民航危險品運輸分類具有多重危險性的物質(zhì)物品Dangerou
- 中華護理學會團體標準|2024 針刺傷預防與處理課件
- 江蘇省淮安市2022年中考化學真題(解析版)
- 礦產(chǎn)勘查野外地質(zhì)調(diào)查安全操作考核試卷
- 2025-2030年中國數(shù)字金融行業(yè)市場深度調(diào)研及競爭格局與前景預測研究報告
- 2025 年發(fā)展對象培訓考試題及答案
- 2024北森圖表分析題庫
- 蜜雪冰城轉(zhuǎn)讓店協(xié)議合同
- 產(chǎn)品臨床推廣合同協(xié)議書范本模板5篇
- 玻璃行業(yè)合作合同協(xié)議
- 2025-2030中國呼啦圈市場占有率調(diào)查與前景消費規(guī)模建議研究報告
評論
0/150
提交評論