![萬(wàn)有引力定律經(jīng)典例題_第1頁(yè)](http://file4.renrendoc.com/view/87025c8b381283236e09e44859ada19a/87025c8b381283236e09e44859ada19a1.gif)
![萬(wàn)有引力定律經(jīng)典例題_第2頁(yè)](http://file4.renrendoc.com/view/87025c8b381283236e09e44859ada19a/87025c8b381283236e09e44859ada19a2.gif)
![萬(wàn)有引力定律經(jīng)典例題_第3頁(yè)](http://file4.renrendoc.com/view/87025c8b381283236e09e44859ada19a/87025c8b381283236e09e44859ada19a3.gif)
![萬(wàn)有引力定律經(jīng)典例題_第4頁(yè)](http://file4.renrendoc.com/view/87025c8b381283236e09e44859ada19a/87025c8b381283236e09e44859ada19a4.gif)
![萬(wàn)有引力定律經(jīng)典例題_第5頁(yè)](http://file4.renrendoc.com/view/87025c8b381283236e09e44859ada19a/87025c8b381283236e09e44859ada19a5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
-.z.1.天體運(yùn)動(dòng)的分析方法2.中心天體質(zhì)量和密度的估算(1)天體外表的重力加速度g和天體半徑RGeq\f(Mm,R2)=mg?eq\b\lc\{\rc\(\a\vs4\al\co1(天體質(zhì)量:M=\f(gR2,G),天體密度:ρ=\f(3g,4πGR)))(2)衛(wèi)星繞天體做圓周運(yùn)動(dòng)的周期T和軌道半徑req\b\lc\{\rc\(\a\vs4\al\co1(①G\f(Mm,r2)=m\f(4π2,T2)r?M=\f(4π2r3,GT2),②ρ=\f(M,\f(4,3)πR3)=\f(3πr3,GT2R3),③衛(wèi)星在天體外表附近飛行時(shí),r=R,則ρ=\f(3π,GT2)))1.火星和木星沿各自的橢圓軌道繞太陽(yáng)運(yùn)行,根據(jù)開(kāi)普勒行星運(yùn)動(dòng)定律可知()A.太陽(yáng)位于木星運(yùn)行軌道的中心B.火星和木星繞太陽(yáng)運(yùn)行速度的大小始終相等C.火星與木星公轉(zhuǎn)周期之比的平方等于它們軌道半長(zhǎng)軸之比的立方D.一樣時(shí)間內(nèi),火星與太陽(yáng)連線掃過(guò)的面積等于木星與太陽(yáng)連線掃過(guò)的面積解析:由開(kāi)普勒第一定律(軌道定律)可知,太陽(yáng)位于木星運(yùn)行軌道的一個(gè)焦點(diǎn)上,A錯(cuò)誤;火星和木星繞太陽(yáng)運(yùn)行的軌道不同,運(yùn)行速度的大小不可能始終相等,B錯(cuò)誤;根據(jù)開(kāi)普勒第三定律(周期定律)知所有行星軌道的半長(zhǎng)軸的三次方與它的公轉(zhuǎn)周期的平方的比值是一個(gè)常數(shù),C正確;對(duì)于*一個(gè)行星來(lái)說(shuō),其與太陽(yáng)連線在一樣的時(shí)間內(nèi)掃過(guò)的面積相等,不同行星在一樣的時(shí)間內(nèi)掃過(guò)的面積不相等,D錯(cuò)誤.答案:C2.(2016·**二檢)據(jù)報(bào)道,目前我國(guó)正在研制"螢火二號(hào)〞火星探測(cè)器.探測(cè)器升空后,先在近地軌道上以線速度v環(huán)繞地球飛行,再調(diào)整速度進(jìn)入地火轉(zhuǎn)移軌道,最后再一次調(diào)整速度以線速度v′在火星外表附近環(huán)繞飛行.假設(shè)認(rèn)為地球和火星都是質(zhì)量分布均勻的球體,火星與地球的半徑之比為1∶2,密度之比為5∶7,設(shè)火星與地球外表重力加速度分別為g′和g,以下結(jié)論正確的選項(xiàng)是()A.g′∶g=4∶1 B.g′∶g=10∶7C.v′∶v=eq\r(\f(5,28)) D.v′∶v=eq\r(\f(5,14))解析:在天體外表附近,重力與萬(wàn)有引力近似相等,由Geq\f(Mm,R2)=mg,M=ρeq\f(4,3)πR3,解兩式得g=eq\f(4,3)GπρR,所以g′∶g=5∶14,A、B項(xiàng)錯(cuò);探測(cè)器在天體外表飛行時(shí),萬(wàn)有引力充當(dāng)向心力,由Geq\f(Mm,R2)=meq\f(v2,R),M=ρeq\f(4,3)πR3,解兩式得v=2Req\r(\f(Gπρ,3)),所以v′∶v=eq\r(\f(5,28)),C項(xiàng)正確,D項(xiàng)錯(cuò).答案:C3.嫦娥三號(hào)〞探月衛(wèi)星于2013年12月2日1點(diǎn)30分在**衛(wèi)星發(fā)射中心發(fā)射,將實(shí)現(xiàn)"落月〞的新階段.假設(shè)引力常量G,月球繞地球做圓周運(yùn)動(dòng)的半徑r1、周期T1,"嫦娥三號(hào)〞探月衛(wèi)星繞月球做圓周運(yùn)動(dòng)的環(huán)月軌道(見(jiàn)圖)半徑r2、周期T2,不計(jì)其他天體的影響,則根據(jù)題目條件可以()A.求出"嫦娥三號(hào)〞探月衛(wèi)星的質(zhì)量B.求出地球與月球之間的萬(wàn)有引力C.求出地球的密度D.eq\f(r13,T12)=eq\f(r23,T22)解析:繞地球轉(zhuǎn)動(dòng)的月球受力為eq\f(GMM′,r12)=M′r1eq\f(4π2,T12)得T1=eq\r(\f(4π2r13,GM))=eq\r(\f(4π2r13,Gρ\f(4,3)πr3)).由于不知道地球半徑r,無(wú)法求出地球密度,C錯(cuò)誤;對(duì)"嫦娥三號(hào)〞而言,eq\f(GM′m,r22)=mr2eq\f(4π2,T22),T2=eq\r(\f(4π2r23,GM′)),"嫦娥三號(hào)〞的周期和半徑,可求出月球質(zhì)量M′,但是所有的衛(wèi)星在萬(wàn)有引力提供向心力的運(yùn)動(dòng)學(xué)公式中衛(wèi)星質(zhì)量都約掉了,無(wú)法求出衛(wèi)星質(zhì)量,因此探月衛(wèi)星質(zhì)量無(wú)法求出,A錯(cuò)誤;已經(jīng)求出地球和月球質(zhì)量,而且知道月球繞地球做圓周運(yùn)動(dòng)的半徑r1,根據(jù)F=eq\f(GMM′,r12)可求出地球和月球之間的引力,B正確;由開(kāi)普勒第三定律即半長(zhǎng)軸三次方與公轉(zhuǎn)周期二次方成正比,前提是對(duì)同一中心天體而言,但是兩個(gè)圓周運(yùn)動(dòng)的中心天體一個(gè)是地球一個(gè)是月球,D錯(cuò)誤.答案:B估算天體質(zhì)量和密度時(shí)應(yīng)注意的問(wèn)題(1)利用萬(wàn)有引力提供天體做圓周運(yùn)動(dòng)的向心力估算天體質(zhì)量時(shí),估算的只是中心天體的質(zhì)量,并非環(huán)繞天體的質(zhì)量.(2)區(qū)別天體半徑R和衛(wèi)星軌道半徑r,只有在天體外表附近的衛(wèi)星才有r≈R;計(jì)算天體密度時(shí),V=eq\f(4,3)πR3中的R只能是中心天體的半徑.考點(diǎn)二人造衛(wèi)星的運(yùn)行授課提示:對(duì)應(yīng)學(xué)生用書(shū)第57頁(yè)1.人造衛(wèi)星的a、ω、v、T與r的關(guān)系eq\f(GMm,r2)=eq\b\lc\{\rc\}(\a\vs4\al\co1(ma→a=\f(GM,r2)→a∝\f(1,r2),m\f(v2,r)→v=\r(\f(GM,r))→v∝\f(1,\r(r)),mω2r→ω=\r(\f(GM,r3))→ω∝\f(1,\r(r3)),m\f(4π2,T2)r→T=\r(\f(4π2r3,GM))→T∝\r(r3)))2.近地時(shí)mg=eq\f(GMm,R2)→GM=gR2.1.地球同步衛(wèi)星的特點(diǎn)(1)軌道平面一定:軌道平面和赤道平面重合.(2)周期一定:與地球自轉(zhuǎn)周期一樣,即T=24h=86400s.(3)角速度一定:與地球自轉(zhuǎn)的角速度一樣.(4)高度一定:根據(jù)Geq\f(Mm,r2)=meq\f(4π2,T2)r得r=eq\r(3,\f(GMT2,4π2))=4.23×104km,衛(wèi)星離地面高度h=r-R≈6R(為恒量).(5)繞行方向一定:與地球自轉(zhuǎn)的方向一致.2.極地衛(wèi)星和近地衛(wèi)星(1)極地衛(wèi)星運(yùn)行時(shí)每圈都經(jīng)過(guò)南北兩極,由于地球自轉(zhuǎn),極地衛(wèi)星可以實(shí)現(xiàn)全球覆蓋.(2)近地衛(wèi)星是在地球外表附近環(huán)繞地球做勻速圓周運(yùn)動(dòng)的衛(wèi)星,其運(yùn)行的軌道半徑可近似認(rèn)為等于地球的半徑,其運(yùn)行線速度約為7.9km/s.(3)兩種衛(wèi)星的軌道平面一定通過(guò)地球的球心.1.(2015·高考**卷)如圖,假設(shè)兩顆人造衛(wèi)星a和b均繞地球做勻速圓周運(yùn)動(dòng),a、b到地心O的距離分別為r1、r2,線速度大小分別為v1、v2,則()A.eq\f(v1,v2)=eq\r(\f(r2,r1)) B.eq\f(v1,v2)=eq\r(\f(r1,r2))C.eq\f(v1,v2)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(r2,r1)))2 D.eq\f(v1,v2)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(r1,r2)))2解析:根據(jù)萬(wàn)有引力定律可得Geq\f(Mm,r2)=meq\f(v2,r),即v=eq\r(\f(GM,r)),所以有eq\f(v1,v2)=eq\r(\f(r2,r1)),所以A項(xiàng)正確,B、C、D項(xiàng)錯(cuò)誤.答案:A2.2015年3月30號(hào)晚上9點(diǎn)52分,我國(guó)在**衛(wèi)星發(fā)射中心用長(zhǎng)征三號(hào)丙運(yùn)載火箭,將我國(guó)首顆新一代北斗導(dǎo)航衛(wèi)星發(fā)射升空,于31號(hào)凌晨3點(diǎn)34分順利進(jìn)入預(yù)定軌道.這次發(fā)射的新一代北斗導(dǎo)航衛(wèi)星,是我國(guó)發(fā)射的第17顆北斗導(dǎo)航衛(wèi)星.北斗衛(wèi)星導(dǎo)航系統(tǒng)空間段方案由35顆衛(wèi)星組成,包括5顆靜止軌道衛(wèi)星、27顆中地球軌道衛(wèi)星、3顆傾斜同步軌道衛(wèi)星.中地球軌道衛(wèi)星和靜止軌道衛(wèi)星都繞地球球心做圓周運(yùn)動(dòng),中地球軌道衛(wèi)星離地面高度低,則中地球軌道衛(wèi)星與靜止軌道衛(wèi)星相比,做圓周運(yùn)動(dòng)的()A.周期大 B.線速度小C.角速度小 D.向心加速度大解析:衛(wèi)星離地面的高度越低,則運(yùn)動(dòng)半徑越?。鶕?jù)萬(wàn)有引力提供圓周運(yùn)動(dòng)向心力得Geq\f(Mm,r2)=meq\f(v2,r)=mω2r=meq\f(4π2r,T2)=ma,則周期T=eq\r(\f(4π2r3,GM)),知半徑r越小,周期越小,故A錯(cuò)誤;線速度v=eq\r(\f(GM,r)),知半徑r越小,線速度越大,故B錯(cuò)誤;角速度ω=eq\r(\f(GM,r3)),知半徑r越小,角速度越大,故C錯(cuò)誤;向心加速度a=eq\f(GM,r2),知半徑r越小,向心加速度越大,故D正確.答案:D3."空間站〞是科學(xué)家進(jìn)展天文探測(cè)和科學(xué)試驗(yàn)的特殊而又重要的場(chǎng)所.假設(shè)"空間站〞正在地球赤道平面內(nèi)的圓周軌道上運(yùn)行,其離地球外表的高度為同步衛(wèi)星離地球外表高度的十分之一,且運(yùn)行方向與地球自轉(zhuǎn)方向一致.以下說(shuō)法正確的有()A."空間站〞運(yùn)行時(shí)的加速度小于同步衛(wèi)星運(yùn)行的加速度B."空間站〞運(yùn)行時(shí)的速度等于同步衛(wèi)星運(yùn)行速度的eq\r(10)倍C.站在地球赤道上的人觀察到"空間站〞向東運(yùn)動(dòng)D.在"空間站〞工作的宇航員因不受重力而可在艙中懸浮解析:根據(jù)Geq\f(Mm,r2)=ma得a=eq\f(Gm,r2),知"空間站〞運(yùn)行的加速度大于同步衛(wèi)星運(yùn)行的加速度,故A錯(cuò)誤;根據(jù)Geq\f(Mm,r2)=meq\f(v2,r)得v=eq\r(\f(GM,r)),離地球外表的高度不是其運(yùn)動(dòng)半徑,所以線速度之比不是eq\r(10)∶1,故B錯(cuò)誤;軌道半徑越大,角速度越小,同步衛(wèi)星和地球自轉(zhuǎn)的角速度一樣,所以空間站的角速度大于地球自轉(zhuǎn)的角速度,所以站在地球赤道上的人觀察到空間站向東運(yùn)動(dòng),故C正確;在"空間站〞工作的宇航員處于完全失重狀態(tài),重力充當(dāng)向心力和空間站一起做圓周運(yùn)動(dòng),故D錯(cuò)誤.答案:C人造衛(wèi)星問(wèn)題的解題技巧(1)利用萬(wàn)有引力提供向心力的不同表達(dá)式eq\f(GMm,r2)=meq\f(v2,r)=mrω2=meq\f(4π2r,T2)=man(2)解決力與運(yùn)動(dòng)關(guān)系的思想還是動(dòng)力學(xué)思想,解決力與運(yùn)動(dòng)的關(guān)系的橋梁還是牛頓第二定律.①衛(wèi)星的an、v、ω、T是相互聯(lián)系的,其中一個(gè)量發(fā)生變化,其他各量也隨之發(fā)生變化.②an、v、ω、T均與衛(wèi)星的質(zhì)量無(wú)關(guān),只由軌道半徑r和中心天體質(zhì)量共同決定.(3)要熟記經(jīng)常用到的常數(shù),如地球自轉(zhuǎn)一周為一天,繞太陽(yáng)公轉(zhuǎn)一周為一年,月球繞地球公轉(zhuǎn)一周為一月(27.3天)等.考點(diǎn)三衛(wèi)星的發(fā)射和變軌問(wèn)題授課提示:對(duì)應(yīng)學(xué)生用書(shū)第57頁(yè)1.第一宇宙速度(環(huán)繞速度)v1=7.9km/s,既是發(fā)射衛(wèi)星的最小發(fā)射速度,也是衛(wèi)星繞地球運(yùn)行的最大環(huán)繞速度,還是繞地面附近環(huán)繞地球做勻速圓周運(yùn)動(dòng)時(shí)具有的速度.2.第二宇宙速度(脫離速度)v2=11.2km/s,使衛(wèi)星掙脫地球引力束縛的最小發(fā)射速度.3.第三宇宙速度(逃逸速度)v3=16.7km/s,使衛(wèi)星掙脫太陽(yáng)引力束縛的最小發(fā)射速度.1.第一宇宙速度的兩種計(jì)算方法(1)由Geq\f(Mm,R2)=meq\f(v2,R)得v=eq\r(\f(GM,R)).(2)由mg=meq\f(v2,R)得v=eq\r(gR).2.衛(wèi)星變軌的分析(1)變軌原因:當(dāng)衛(wèi)星由于*種原因速度突然改變時(shí)(開(kāi)啟或關(guān)閉發(fā)動(dòng)機(jī)或空氣阻力作用),萬(wàn)有引力不再等于向心力,衛(wèi)星將變軌運(yùn)行.(2)變軌分析:衛(wèi)星在圓軌道上穩(wěn)定時(shí),Geq\f(Mm,r2)=meq\f(v2,r)=mω2r=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))2r.①當(dāng)衛(wèi)星的速度突然增大時(shí),Geq\f(Mm,r2)<meq\f(v2,r),即萬(wàn)有引力缺乏以提供向心力,衛(wèi)星將做離心運(yùn)動(dòng),脫離原來(lái)的圓軌道,軌道半徑變大.當(dāng)衛(wèi)星進(jìn)入新的軌道穩(wěn)定運(yùn)行時(shí),由v=eq\r(\f(GM,r))可知其運(yùn)行速度比原軌道時(shí)減小,但重力勢(shì)能、機(jī)械能均增加;②當(dāng)衛(wèi)星的速度突然減小時(shí),Geq\f(Mm,r2)>meq\f(v2,r),即萬(wàn)有引力大于所需要的向心力,衛(wèi)星將做近心運(yùn)動(dòng),脫離原來(lái)的圓軌道,軌道半徑變?。?dāng)衛(wèi)星進(jìn)入新的軌道穩(wěn)定運(yùn)行時(shí),由v=eq\r(\f(GM,r))可知其運(yùn)行速度比原軌道時(shí)增大,但重力勢(shì)能、機(jī)械能均減?。?.(多項(xiàng)選擇)(2015·高考**卷)在星球外表發(fā)射探測(cè)器,當(dāng)發(fā)射速度為v時(shí),探測(cè)器可繞星球外表做勻速圓周運(yùn)動(dòng);當(dāng)發(fā)射速度到達(dá)eq\r(2)v時(shí),可擺脫星球引力束縛脫離該星球.地球、火星兩星球的質(zhì)量比約為10∶1,半徑比約為2∶1.以下說(shuō)法正確的有()A.探測(cè)器的質(zhì)量越大,脫離星球所需要的發(fā)射速度越大B.探測(cè)器在地球外表受到的引力比在火星外表的大C.探測(cè)器分別脫離兩星球所需要的發(fā)射速度相等D.探測(cè)器脫離星球的過(guò)程中,勢(shì)能逐漸增大解析:由Geq\f(Mm,R2)=meq\f(v2,R)得,v=eq\r(\f(GM,R)),eq\r(2)v=eq\r(\f(2GM,R)),可知探測(cè)器脫離星球所需要的發(fā)射速度與探測(cè)器的質(zhì)量無(wú)關(guān),A項(xiàng)錯(cuò)誤;由F=Geq\f(Mm,R2)及地球、火星的質(zhì)量、半徑之比可知,探測(cè)器在地球外表受到的引力比在火星外表的大,B項(xiàng)正確;由eq\r(2)v=eq\r(\f(2GM,R))可知,探測(cè)器脫離兩星球所需的發(fā)射速度不同,C項(xiàng)錯(cuò)誤;探測(cè)器在脫離兩星球的過(guò)程中,引力做負(fù)功,引力勢(shì)能增大,D項(xiàng)正確.答案:BD2.(多項(xiàng)選擇)2013年12月2日,我國(guó)探月探測(cè)器"嫦娥三號(hào)〞在**衛(wèi)星發(fā)射中心成功發(fā)射升空,此飛行軌道示意圖如下圖,地面發(fā)射后奔向月球,在P點(diǎn)從圓形軌道Ⅰ進(jìn)入橢圓軌道Ⅱ,Q為軌道Ⅱ上的近月點(diǎn).以下關(guān)于"嫦娥三號(hào)〞的運(yùn)動(dòng),正確的說(shuō)法是()A.發(fā)射速度一定大于7.9km/sB.在軌道Ⅱ上從P到Q的過(guò)程中速率不斷增大C.在軌道Ⅱ上經(jīng)過(guò)P的速度小于在軌道Ⅰ上經(jīng)過(guò)P的速度D.在軌道Ⅱ上經(jīng)過(guò)P的加速度小于在軌道Ⅰ上經(jīng)過(guò)P的加速度解析:"嫦娥三號(hào)〞探測(cè)器的發(fā)射速度一定大于7.9km/s,A正確.在軌道Ⅱ上從P到Q的過(guò)程中速率不斷增大,選項(xiàng)B正確."嫦娥三號(hào)〞從軌道Ⅰ上運(yùn)動(dòng)到軌道Ⅱ上要減速,故在軌道Ⅱ上經(jīng)過(guò)P的速度小于在軌道Ⅰ上經(jīng)過(guò)P的速度,選項(xiàng)C正確.在軌道Ⅱ上經(jīng)過(guò)P的加速度等于在軌道Ⅰ上經(jīng)過(guò)P的加速度,D錯(cuò).答案:ABC3.(2016·**石室中學(xué)二診)如下圖,在同一軌道平面上的三個(gè)人造地球衛(wèi)星A、B、C,在*一時(shí)刻恰好在同一條直線上.它們的軌道半徑之比為1∶2∶3,質(zhì)量相等,則以下說(shuō)法中正確的選項(xiàng)是()A.三顆衛(wèi)星的加速度之比為9∶4∶1B.三顆衛(wèi)星具有機(jī)械能的大小關(guān)系為EA<EB<ECC.B衛(wèi)星加速后可與A衛(wèi)星相遇D.A衛(wèi)星運(yùn)動(dòng)27周后,C衛(wèi)星也恰回到原地點(diǎn)解析:根據(jù)萬(wàn)有引力提供向心力Geq\f(Mm,r2)=ma,得a=eq\f(GM,r2),故aA∶aB∶aC=eq\f(1,rA2)∶eq\f(1,rB2)∶eq\f(1,rC2)=eq\f(1,12)∶eq\f(1,22)∶eq\f(1,32)=36∶9∶4,故A錯(cuò)誤;衛(wèi)星發(fā)射的越高,需要克制地球引力做功越多,故機(jī)械能越大,故EA<EB<EC,故B正確;B衛(wèi)星加速后做離心運(yùn)動(dòng),軌道半徑要變大,不可能與A衛(wèi)星相遇,故C錯(cuò)誤;根據(jù)萬(wàn)有引力提供向心力Geq\f(Mm,r2)=meq\f(4π2,T2)r,得T=2πeq\r(\f(r3,GM)),所以eq\f(TA,TC)=eq\r(\f(rA3,rC3))=eq\f(1,\r(27)),即TC=eq\r(27)TA.假設(shè)A衛(wèi)星運(yùn)動(dòng)27周后,C衛(wèi)星也恰回到原地點(diǎn),則C的周期應(yīng)為A的周期的27倍,故D錯(cuò)誤.答案:B航天器變軌問(wèn)題的三點(diǎn)考前須知(1)航天器變軌時(shí)半徑的變化,根據(jù)萬(wàn)有引力和所需向心力的大小關(guān)系判斷;穩(wěn)定在新軌道上的運(yùn)行速度變化由v=eq\r(\f(GM,r))判斷.(2)航天器在不同軌道上運(yùn)行時(shí)機(jī)械能不同,軌道半徑越大,機(jī)械能越大.(3)航天器經(jīng)過(guò)不同軌道相交的同一點(diǎn)時(shí)加速度相等,外軌道的速度大于內(nèi)軌道的速度.考點(diǎn)四天體運(yùn)動(dòng)中的雙星或多星模型授課提示:對(duì)應(yīng)學(xué)生用書(shū)第58頁(yè)1.模型構(gòu)建繞公共圓心轉(zhuǎn)動(dòng)的兩個(gè)星體組成的系統(tǒng),我們稱之為雙星系統(tǒng),如下圖.2.模型條件(1)兩顆星彼此相距較近.(2)兩顆星靠相互之間的萬(wàn)有引力做勻速圓周運(yùn)動(dòng).(3)兩顆星繞同一圓心做圓周運(yùn)動(dòng).3.模型特點(diǎn)(1)"向心力等大反向〞——兩顆星做勻速圓周運(yùn)動(dòng)的向心力由它們之間的萬(wàn)有引力提供,故F1=F2,且方向相反,分別作用在兩顆行星上,是一對(duì)作用力和反作用力.(2)"周期、角速度一樣〞——兩顆行星做勻速圓周運(yùn)動(dòng)的周期、角速度相等.(3)"半徑反比〞——圓心在兩顆行星的連線上,且r1+r2=L,兩顆行星做勻速圓周運(yùn)動(dòng)的半徑與行星的質(zhì)量成反比.1.雙星系統(tǒng)由兩顆恒星組成,兩恒星在相互引力的作用下,分別圍繞其連線上的*一點(diǎn)做周期一樣的勻速圓周運(yùn)動(dòng).研究發(fā)現(xiàn),雙星系統(tǒng)演化過(guò)程中,兩星的總質(zhì)量、距離和周期均可能發(fā)生變化.假設(shè)*雙星系統(tǒng)中兩星做圓周運(yùn)動(dòng)的周期為T(mén),經(jīng)過(guò)一段時(shí)間演化后,兩星總質(zhì)量變?yōu)樵瓉?lái)的k倍,兩星之間的距離變?yōu)樵瓉?lái)的n倍,則此時(shí)圓周運(yùn)動(dòng)的周期為()A.eq\r(\f(n3,k2))T B.eq\r(\f(n3,k))TC.eq\r(\f(n2,k))T D.eq\r(\f(n,k))T解析:設(shè)兩顆雙星的質(zhì)量分別為m1、m2,做圓周運(yùn)動(dòng)的半徑分別為r1、r2,根據(jù)萬(wàn)有引力提供向心力可得Geq\f(m1m2,(r1+r2)2)=m1r1eq\f(4π2,T2),Geq\f(m1m2,(r1+r2)2)=m2r2eq\f(4π2,T2),聯(lián)立兩式解得m1+m2=eq\f(4π2(r1+r2)3,GT2),即T2=eq\f(4π2(r1+r2)3,G(m1+m2)),因此,當(dāng)兩星總質(zhì)量變?yōu)樵瓉?lái)的k倍,兩星之間的距離變?yōu)樵瓉?lái)的n倍時(shí),兩星圓周運(yùn)動(dòng)的周期為T(mén)′=eq\r(\f(n3,k))T,B正確,A、C、D錯(cuò)誤.答案:B2.(多項(xiàng)選擇)宇宙中存在一些質(zhì)量相等且離其他恒星較遠(yuǎn)的四顆星組成的四星系統(tǒng),通??珊雎云渌求w對(duì)它們的引力作用.設(shè)四星系統(tǒng)中每個(gè)星體的質(zhì)量均為m,半徑均為R,四顆星穩(wěn)定分布在邊長(zhǎng)為a的正方形的四個(gè)頂點(diǎn)上.引力常量為G.關(guān)于四星系統(tǒng),以下說(shuō)法正確的選項(xiàng)是()A.四顆星圍繞正方形對(duì)角線的交點(diǎn)做勻速圓周運(yùn)動(dòng)B.四顆星的軌道半徑均為eq\f(a,2)C.四顆星外表的重力加速度均為eq\f(Gm,R2)D.四顆星的周期均為2πaeq\r(\f(2a,(4+\r(2))Gm))解析:其中一顆星體在其他三顆星體的萬(wàn)有引力作用下,合力方向指向?qū)蔷€的交點(diǎn),圍繞正方形對(duì)角線的交點(diǎn)做勻速圓周運(yùn)動(dòng),由幾何知識(shí)可得軌道半徑均為eq\f(\r(2),2)a,故A正確,B錯(cuò)誤;在星體外表,根據(jù)萬(wàn)有引力等于重力,可得Geq\f(mm′,R2)=m′g,解得g=eq\f(Gm,R2),故C正確;由萬(wàn)有引力定律和向心力公式得eq\f(Gm2,(\r(2)a)2)+eq\f(\r(2)Gm2,a2)=meq\f(4π2,T2)·eq\f(\r(2)a,2),T=2πaeq\r(\f(2a,(4+\r(2))Gm)),故D正確.答案:ACD3.如下圖,雙星系統(tǒng)中的星球A、B都可視為質(zhì)點(diǎn).A、B繞兩者連線上的O點(diǎn)做勻速圓周運(yùn)動(dòng),A、B之間距離不變,引力常量為G,觀測(cè)到A的速率為v、運(yùn)行周期為T(mén),A、B的質(zhì)量分別為m1、m2.(1)求B的周期和速率.(2)A受B的引力FA可等效為位于O點(diǎn)處質(zhì)量為m′的星體對(duì)它的引力,試求m′.(用m1、m2表示)解析:(1)設(shè)A、B的軌道半徑分別為r1、r2,它們做圓周運(yùn)動(dòng)的周期T、角速度ω都一樣,根據(jù)牛頓第二定律有FA=m1ω2r1,F(xiàn)B=m2ω2r2,即eq\f(r1,r2)=eq\f(m2,m1).故B的周期和速率分別為:TB=TA=T,vB=ωr2=ωeq\f(m1r1,m2)=eq\f(m1v,m2).(2)A、B之間的距離r=r1+r2=eq\f(m1+m2,m2)r1,根據(jù)萬(wàn)有引力定律有FA=eq\f(Gm1m2,r2)=eq\f(Gm1m′,r12),所以m′=eq\f(m23,(m1+m2)2).答案:(1)Teq\f(m1v,m2)(2)eq\f(m23,(m1+m2)2)解答雙星問(wèn)題應(yīng)注意"兩等〞"兩不等〞(1)雙星問(wèn)題的"兩等〞①它們的角速度相等.②雙星做勻速圓周運(yùn)動(dòng)的向心力由它們之間的萬(wàn)有引力提供,即它們受到的向心力大小總是相等的.(2)雙星問(wèn)題的"兩不等〞①雙星做勻速圓周運(yùn)動(dòng)的圓心是它們連線上的一點(diǎn),所以雙星做勻速圓周運(yùn)動(dòng)的半徑與雙星間的距離是不相等的,它們的軌道半徑之和才等于它們間的距離.②由m1ω2r1=m2ω2r2知,由于m1與m2一般不相等,故r1與r2一般也不相等.[隨堂反應(yīng)]授課提示:對(duì)應(yīng)學(xué)生用書(shū)第59頁(yè)1.(2015·高考**卷)宇航員王亞平在"天宮1號(hào)〞飛船內(nèi)進(jìn)展了我國(guó)首次太空授課,演示了一些完全失重狀態(tài)下的物理現(xiàn)象.假設(shè)飛船質(zhì)量為m,距地面高度為h,地球質(zhì)量為M,半徑為R,引力常量為G,則飛船所在處的重力加速度大小為()A.0 B.eq\f(GM,(R+h)2)C.eq\f(GMm,(R+h)2) D.eq\f(GM,h2)解析:由eq\f(GMm,(R+h)2)=mg′得g′=eq\f(GM,(R+h)2),B項(xiàng)正確.答案:B2.(2015·高考卷)假設(shè)地球和火星都繞太陽(yáng)做勻速圓周運(yùn)動(dòng),地球到太陽(yáng)的距離小于火星到太陽(yáng)的距離,則()A.地球公轉(zhuǎn)周期大于火星的公轉(zhuǎn)周期B.地球公轉(zhuǎn)的線速度小于火星公轉(zhuǎn)的線速度C.地球公轉(zhuǎn)的加速度小于火星公轉(zhuǎn)的加速度D.地球公轉(zhuǎn)的角速度大于火星公轉(zhuǎn)的角速度解析:地球的公轉(zhuǎn)半徑比火星的公轉(zhuǎn)半徑小,由eq\f(GMm,r2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))2r,可知地球的周期比火星的周期小,故A項(xiàng)錯(cuò)誤;由eq\f(GMm,r2)=meq\f(v2,r),可知地球公轉(zhuǎn)的線速度大,故B項(xiàng)錯(cuò)誤;由eq\f(GMm,r2)=ma,可知地球公轉(zhuǎn)的加速度大,故C項(xiàng)錯(cuò)誤;由eq\f(GMm,r2)=mω2r,可知地球公轉(zhuǎn)的角速度大,故D項(xiàng)正確.答案:D3.地球質(zhì)量為M,半徑為R,自轉(zhuǎn)周期為T(mén),地球同步衛(wèi)星質(zhì)量為m,引力常量為G.有關(guān)同步衛(wèi)星,以下表述正確的選項(xiàng)是()A.衛(wèi)星距離地面的高度為eq\r(\f(GM,R))B.衛(wèi)星的運(yùn)行速度等于第一宇宙速度C.衛(wèi)星運(yùn)行時(shí)受到的向心力大小為Geq\f(Mm,R2)D.衛(wèi)星運(yùn)行的向心加速度小于地球外表的重力加速度解析:由eq\f(GMm,(R+h)2)=m(R+h)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))2得h=eq\r(3,\f(GMT2,4π2))-R,A項(xiàng)錯(cuò)誤;近地衛(wèi)星的運(yùn)行速度等于第一宇宙速度,同步衛(wèi)星的運(yùn)行速度小于第一宇宙速度,B錯(cuò)誤;同步衛(wèi)星運(yùn)行時(shí)的向心力大小為F向=eq\f(GMm,(R+h)2),C錯(cuò)誤;由Geq\f(Mm,R2)=mg得地球外表的重力加速度g=Geq\f(M,R2),而同步衛(wèi)星所在處的向心加速度g′=eq\f(GM,(R+h)2),D正確.答案:D4.(2015·**七中二診)2013年12月2日,嫦娥三號(hào)探測(cè)器由長(zhǎng)征三號(hào)乙運(yùn)載火箭從**衛(wèi)星發(fā)射中心發(fā)射,首次實(shí)現(xiàn)月球軟著陸和月面巡視勘察.假設(shè)嫦娥三號(hào)在環(huán)月圓軌道和橢圓軌道上運(yùn)動(dòng)時(shí),只受到月球的萬(wàn)有引力.則()A.假設(shè)嫦娥三號(hào)環(huán)月圓軌道的半徑、運(yùn)動(dòng)周期和引力常量,則可以計(jì)算出月球的密度B.嫦娥三號(hào)由環(huán)月圓軌道變軌進(jìn)入環(huán)月橢圓軌道時(shí),應(yīng)讓發(fā)動(dòng)機(jī)點(diǎn)火使其加速C.嫦娥三號(hào)在環(huán)月橢圓軌道上P點(diǎn)的速度大于Q點(diǎn)的速度D.嫦娥三號(hào)在環(huán)月圓軌道上的運(yùn)行速率比月球的第一宇宙速度小解析:根據(jù)萬(wàn)有引力提供向心力Geq\f(Mm,r2)=meq\f(4π2,T2)r,可以解出月球的質(zhì)量M=eq\f(4π2r3,GT2),由于不知道月球的半徑,無(wú)法知道月球的體積,故無(wú)法計(jì)算月球的密度,故A錯(cuò)誤;嫦娥三號(hào)在環(huán)月段圓軌道上P點(diǎn)減速,使萬(wàn)有引力大于向心力做近心運(yùn)動(dòng),才能進(jìn)入環(huán)月段橢圓軌道,故B錯(cuò)誤;嫦娥三號(hào)從環(huán)月橢圓軌道上P點(diǎn)向Q點(diǎn)運(yùn)動(dòng)過(guò)程中,距離月球越來(lái)越近,月球?qū)ζ湟ψ稣?,故速度增大,即嫦娥三?hào)在環(huán)月段橢圓軌道上P點(diǎn)的速度小于Q點(diǎn)的速度,故C錯(cuò)誤;衛(wèi)星越高越慢,第一宇宙速度是星球外表近地衛(wèi)星的環(huán)繞速度,故嫦娥三號(hào)在環(huán)月圓軌道上的運(yùn)行速率比月球的第一宇宙速度小,故D正確.答案:D5.一物體在距*一行星外表*一高度處由靜止開(kāi)場(chǎng)做自由落體運(yùn)動(dòng),依次通過(guò)A、B、C三點(diǎn),AB段與BC段的距離均為0.06m,通過(guò)AB段與BC段的時(shí)間分為0.2s與0.1s,求:(1)該星球外表重力加速度值;(2)假設(shè)該星球的半徑為180km,則環(huán)繞該行星的衛(wèi)星做圓周運(yùn)動(dòng)的最小周期為多少?解析:(1)根據(jù)運(yùn)動(dòng)學(xué)公式,由題意可得eq\b\lc\{\rc\(\a\vs4\al\co1(*=v1t1+\f(1,2)gt12,2*=v1(t1+t2)+\f(1,2)g(t1+t2)2))代入數(shù)值可求得g=2m/s2.(2)對(duì)質(zhì)量為m的衛(wèi)星有Geq\f(Mm,r2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))2r星球外表有Geq\f(Mm′,R2)=m′g可知當(dāng)R=r時(shí)衛(wèi)星做圓周運(yùn)動(dòng)的最小周期為T(mén)=2πeq\r(\f(R,g))代入數(shù)據(jù)解得T最?。?00πs.答案:(1)2m/s2(2)600πs[課時(shí)作業(yè)]授課提示:對(duì)應(yīng)學(xué)生用書(shū)第243頁(yè)一、單項(xiàng)選擇題1.(2016·**市石室中學(xué)一診)以下說(shuō)法正確的選項(xiàng)是()A.洗衣機(jī)脫水桶脫水時(shí)利用了離心運(yùn)動(dòng)B.牛頓、千克、秒為力學(xué)單位制中的根本單位C.牛頓提出了萬(wàn)有引力定律,并通過(guò)實(shí)驗(yàn)測(cè)出了萬(wàn)有引力常量D.理想實(shí)驗(yàn)是把實(shí)驗(yàn)的情況外推到一種理想狀態(tài),所以是不可靠的解析:洗衣機(jī)脫水時(shí)利用離心運(yùn)動(dòng)將附著在衣服上的水分甩掉,水做離心運(yùn)動(dòng).故A正確;米、千克、秒為力學(xué)單位制中的根本單位,而牛頓不是根本單位,故B錯(cuò)誤;牛頓提出了萬(wàn)有引力定律,卡文迪許通過(guò)實(shí)驗(yàn)測(cè)出了萬(wàn)有引力常量,故C錯(cuò)誤;理想實(shí)驗(yàn)是把實(shí)驗(yàn)的情況外推到一種理想狀態(tài),是可靠的,故D錯(cuò)誤.答案:A2.歐洲天文學(xué)家在太陽(yáng)系之外發(fā)現(xiàn)了一顆可能適合人類(lèi)居住的行星,命名為"格利斯581c〞.該行星的質(zhì)量是地球的5倍,直徑是地球的1.5倍.設(shè)想在該行星外表附近繞行星圓軌道運(yùn)行的人造衛(wèi)星的動(dòng)能為Ek1,在地球外表附近繞地球沿圓軌道運(yùn)行的一樣質(zhì)量的人造衛(wèi)星的動(dòng)能為Ek2,則eq\f(Ek1,Ek2)為()A.0.13 B.0.3C.3.33 D.7.5解析:在行星外表運(yùn)行的衛(wèi)星其做圓周運(yùn)動(dòng)的向心力由萬(wàn)有引力提供故有Geq\f(Mm,r2)=meq\f(v2,r),所以衛(wèi)星的動(dòng)能為Ek=eq\f(1,2)mv2=eq\f(GMm,2r)故在地球外表運(yùn)行的衛(wèi)星的動(dòng)能Ek2=eq\f(GM地m,2R地)在"格利斯〞行星外表運(yùn)行的衛(wèi)星的動(dòng)能Ek1=eq\f(GM行m,2R行)所以有eq\f(Ek1,Ek2)=eq\f(\f(GM行m,2R行),\f(GM地m,2R地))=eq\f(M行,M地)·eq\f(R地,R行)=eq\f(5,1)×eq\f(1,1.5)=eq\f(10,3)=3.33.答案:C3.(2015·高考**卷)未來(lái)的星際航行中,宇航員長(zhǎng)期處于零重力狀態(tài),為緩解這種狀態(tài)帶來(lái)的不適,有人設(shè)想在未來(lái)的航天器上加裝一段圓柱形"旋轉(zhuǎn)艙〞,如下圖.當(dāng)旋轉(zhuǎn)艙繞其軸線勻速旋轉(zhuǎn)時(shí),宇航員站在旋轉(zhuǎn)艙內(nèi)圓柱形側(cè)壁上,可以受到與他站在地球外表時(shí)一樣大小的支持力.為到達(dá)上述目的,以下說(shuō)法正確的選項(xiàng)是()A.旋轉(zhuǎn)艙的半徑越大,轉(zhuǎn)動(dòng)的角速度就應(yīng)越大B.旋轉(zhuǎn)艙的半徑越大,轉(zhuǎn)動(dòng)的角速度就應(yīng)越小C.宇航員質(zhì)量越大,旋轉(zhuǎn)艙的角速度就應(yīng)越大D.宇航員質(zhì)量越大,旋轉(zhuǎn)艙的角速度就應(yīng)越小解析:宇航員站在旋轉(zhuǎn)艙內(nèi)圓柱形側(cè)壁上,受到的側(cè)壁對(duì)他的支持力等于他站在地球外表時(shí)的支持力,則mg=mrω2,ω=eq\r(\f(g,r)),因此角速度與質(zhì)量無(wú)關(guān),C、D項(xiàng)錯(cuò)誤;半徑越大,需要的角速度越小,A項(xiàng)錯(cuò)誤,B項(xiàng)正確.答案:B4.一人造地球衛(wèi)星繞地球做勻速圓周運(yùn)動(dòng),假設(shè)該衛(wèi)星變軌后仍做勻速圓周運(yùn)動(dòng),速度大小減小為原來(lái)的eq\f(1,2),則變軌前后衛(wèi)星的()A.軌道半徑之比為1∶2B.向心加速度大小之比為4∶1C.角速度大小之比為2∶1D.周期之比為1∶8解析:衛(wèi)星繞地球做圓周運(yùn)動(dòng)過(guò)程中,萬(wàn)有引力充當(dāng)向心力,Geq\f(Mm,r2)=meq\f(v2,r)?v=eq\r(\f(GM,r)),eq\f(v1,v2)=eq\r(\f(r2,r1))=2?eq\f(r1,r2)=eq\f(1,4),A項(xiàng)錯(cuò);Geq\f(Mm,r2)=ma?a=eq\f(GM,r2),所以eq\f(a1,a2)=16,B項(xiàng)錯(cuò);由開(kāi)普勒第三定律eq\f(T12,T22)=eq\f(r13,r23)=eq\f(1,43)?eq\f(T1,T2)=eq\f(1,8),D項(xiàng)正確;因?yàn)門(mén)=eq\f(2π,ω),角速度與周期成反比,故eq\f(ω1,ω2)=8,C項(xiàng)錯(cuò).答案:D5.美國(guó)宇航局2011年12月5日宣布,他們發(fā)現(xiàn)了太陽(yáng)系外第一顆類(lèi)似地球的、可適合居住的行星"開(kāi)普勒-226〞,它每290天環(huán)繞著一顆類(lèi)似于太陽(yáng)的恒星運(yùn)轉(zhuǎn)一周,距離地球約600光年,體積是地球的2.4倍.萬(wàn)有引力常量和地球外表的重力加速度.根據(jù)以上信息,以下推理中正確的選項(xiàng)是()A.假設(shè)能觀測(cè)到該行星的軌道半徑,可求出該行星所受的萬(wàn)有引力B.假設(shè)該行星的密度與地球的密度相等,可求出該行星外表的重力加速度C.根據(jù)地球的公轉(zhuǎn)周期與軌道半徑,可求出該行星的軌道半徑D.假設(shè)該行星的密度和半徑,可求出該行星的軌道半徑解析:根據(jù)萬(wàn)有引力公式F=Geq\f(Mm,r2),由于不知道中心天體的質(zhì)量,無(wú)法算出向心力,故A錯(cuò)誤;根據(jù)萬(wàn)有引力提供向心力公式Geq\f(Mm,r2)=mg,有g(shù)=Geq\f(M,r2),假設(shè)該行星的密度與地球的密度相等,體積是地球的2.4倍,則有eq\f(M行,M地)=eq\f(V行,V地)=2.4,eq\f(r行,r地)=eq\r(3,\f(V行,V地))=eq\r(3,2.4),根據(jù)eq\f(g行,g)=eq\f(M行r地2,M地r行2),可以求出該行星外表的重力加速度,故B正確;由于地球與行星不是圍繞同一個(gè)中心天體做勻速圓周運(yùn)動(dòng),故根據(jù)地球的公轉(zhuǎn)周期與軌道半徑,無(wú)法求出該行星的軌道半徑,故C錯(cuò)誤;由于不知道中心天體的質(zhì)量,該行星的密度和半徑,無(wú)法求出該行星的軌道半徑,故D錯(cuò)誤.答案:B6.如下圖,在火星與木星軌道之間有一小行星帶.假設(shè)該帶中的小行星只受到太陽(yáng)的引力,并繞太陽(yáng)做勻速圓周運(yùn)動(dòng).以下說(shuō)法正確的選項(xiàng)是()A.小行星帶內(nèi)側(cè)小行星的向心加速度值大于外側(cè)小行星的向心加速度值B.小行星帶內(nèi)各小行星圓周運(yùn)動(dòng)的線速度值大于地球公轉(zhuǎn)的線速度值C.太陽(yáng)對(duì)各小行星的引力一樣D.各小行星繞太陽(yáng)運(yùn)動(dòng)的周期均小于一年解析:小行星繞太陽(yáng)做勻速圓周運(yùn)動(dòng),萬(wàn)有引力提供圓周運(yùn)動(dòng)向心力,有Geq\f(Mm,r2)=meq\f(v2,r)=ma=meq\f(4π2,T2)r,小行星的加速度a=eq\f(GM,r2),小行星內(nèi)側(cè)軌道半徑小于外側(cè)軌道半徑,故內(nèi)側(cè)向心加速度大于外側(cè)的向心加速度,故A正確;線速度v=eq\r(\f(GM,r))知,小行星的軌道半徑大于地球的軌道半徑,故小行星的公轉(zhuǎn)線速度小于地球公轉(zhuǎn)的線速度,故B錯(cuò)誤;太陽(yáng)對(duì)小行星的引力F=Geq\f(Mm,r2),由于各小行星的軌道半徑、質(zhì)量均未知,故不能得出太陽(yáng)對(duì)小行星的引力一樣的結(jié)論,故C錯(cuò)誤;由周期T=2πeq\r(\f(r3,GM))知,由于小行星軌道半徑大于地球公轉(zhuǎn)半徑,故小行星的運(yùn)動(dòng)周期均大于地球公轉(zhuǎn)周期,即大于一年,故D錯(cuò)誤.答案:A7.由于火星外表的特征非常接近地球,人類(lèi)對(duì)火星的探索一直不斷,可以想象,在不久的將來(lái),地球的宇航員一定能登上火星.火星半徑是地球半徑的eq\f(1,2),火星質(zhì)量是地球質(zhì)量的eq\f(1,9),地球外表重力加速度為g,假假設(shè)宇航員在地面上能向上跳起的最大高度為h,在忽略地球、火星自轉(zhuǎn)影響的條件下,下述分析正確的選項(xiàng)是()A.宇航員在火星外表受到的萬(wàn)有引力是在地球外表受到的萬(wàn)有引力的eq\f(2,9)B.火星外表的重力加速度是eq\f(2,3)gC.宇航員以一樣的初速度在火星上起跳時(shí),可跳的最大高度是eq\f(9,2)hD.火星的第一宇宙速度是地球第一宇宙速度的eq\f(\r(2),3)解析:根據(jù)萬(wàn)有引力定律的表達(dá)式F=Geq\f(Mm,R2).火星半徑是地球半徑的eq\f(1,2),質(zhì)量是地球質(zhì)量的eq\f(1,9),所以宇航員在火星外表受到的萬(wàn)有引力是在地球外表受到的萬(wàn)有引力的eq\f(4,9),則火星外表的重力加速度是eq\f(4,9)g,故A、B錯(cuò)誤;宇航員以v0在地球起跳時(shí),根據(jù)豎直上拋的運(yùn)動(dòng)規(guī)律得出:可跳的最大高度是h=eq\f(v2,2g),由于火星外表的重力加速度是eq\f(4,9)g,宇航員以一樣的初速度在火星上起跳時(shí),可跳的最大高度h′=eq\f(9,4)h,故C錯(cuò)誤;由mg=meq\f(v2,R),得第一宇宙速度v=eq\r(gR),又因火星外表的重力加速度是eq\f(4,9)g,則火星的第一宇宙速度是地球第一宇宙速度的eq\f(\r(2),3),故D正確.答案:D二、多項(xiàng)選擇題8.如下圖,三顆質(zhì)量均為m的地球同步衛(wèi)星等間隔分布在半徑為r的圓軌道上,設(shè)地球質(zhì)量為M,半徑為R.以下說(shuō)法正確的選項(xiàng)是()A.地球?qū)σ活w衛(wèi)星的引力大小為eq\f(GMm,(r-R)2)B.一顆衛(wèi)星對(duì)地球的引力大小為eq\f(GMm,r2)C.兩顆衛(wèi)星之間的引力大小為eq\f(Gm2,3r2)D.三顆衛(wèi)星對(duì)地球引力的合力大小為eq\f(3GMm,r2)解析:根據(jù)萬(wàn)有引力定律,地球?qū)σ活w衛(wèi)星的引力大小F萬(wàn)=Geq\f(Mm,r2),A項(xiàng)錯(cuò)誤;由牛頓第三定律知B項(xiàng)正確;三顆衛(wèi)星等間距分布,任意兩星間距為eq\r(3)r,故兩衛(wèi)星間引力大小F萬(wàn)′=Geq\f(m2,3r2),C項(xiàng)正確;任意兩衛(wèi)星對(duì)地球引力的夾角為120°,故任意兩衛(wèi)星對(duì)地球引力的合力與第三衛(wèi)星對(duì)地球的引力大小相等,方向相反,三顆衛(wèi)星對(duì)地球引力的合力大小為零,D項(xiàng)錯(cuò)誤.答案:BC9.(2016·**二診)我國(guó)的"玉兔號(hào)〞月球車(chē)于2013年12月14日晚成功降落在月球虹灣區(qū),開(kāi)場(chǎng)探測(cè)科考.機(jī)器人"玉兔號(hào)〞在月球外表做了一個(gè)豎直上拋試驗(yàn),測(cè)得物體從月球外表以初速度v0豎直向上拋時(shí)上升的最大高度為h,月球半徑為R,自轉(zhuǎn)周期為T(mén),引力常量為G.則以下說(shuō)法中不正確的選項(xiàng)是()A.月球外表重力加速度為eq\f(v02,h)B.月球的第一宇宙速度為v0eq\r(\f(2h,R))C.月球同步衛(wèi)星離月球外表高度為eq\r(3,\f(v02RT2,8π2h))-RD.月球的平均密度為eq\f(3v02,8πGhR)解析:由v2=2gh得,月球外表重力加速度為g月=eq\f(v02,2h),故A錯(cuò)誤;月球的第一宇宙速度為近月衛(wèi)星的運(yùn)行速度,根據(jù)重力提供向心力mg=meq\f(v2,R),所以v=eq\r(g月R)=v0eq\r(\f(R,2h)),故B錯(cuò)誤;月球同步衛(wèi)星繞月球做勻速圓周運(yùn)動(dòng),根據(jù)萬(wàn)有引力提供向心力有Geq\f(Mm,(R+H)2)=meq\f(4π2,T2)(R+H)又有Geq\f(Mm,R2)=mg月聯(lián)立解得H=eq\r(3,\f(v02R2T2,8π2h))-R,故C錯(cuò)誤;由ρ=eq\f(M,V),Geq\f(Mm,R2)=mg月,V=eq\f(4,3)πR3,得ρ=eq\f(3v02,8πGhR),D項(xiàng)正確.答案:ABC10.(2015·高考全國(guó)卷Ⅰ)我國(guó)發(fā)射的"嫦娥三號(hào)〞登月探測(cè)器靠近月球后,先在月球外表附近的近似圓軌道上繞月運(yùn)行;然后經(jīng)過(guò)一系列過(guò)程,在離月面4m高處做一次懸停(可認(rèn)為是相對(duì)于月球靜止);最后關(guān)閉發(fā)動(dòng)機(jī),探測(cè)器自由下落.探測(cè)器的質(zhì)量約為1.3×103kg,地球質(zhì)量約為月球的81倍,地球半徑約為月球的3.7倍,地球外表的重力加速度大小約為9.8m/s2.則此探測(cè)器()A.在著陸前的瞬間,速度大小約為8.9m/sB.懸停時(shí)受到的反沖作用力約為2×103NC.從離開(kāi)近月圓軌道到著陸這段時(shí)間內(nèi),機(jī)械能守恒D.在近月圓軌道上運(yùn)行的線速度小于人造衛(wèi)星在近地圓軌道上運(yùn)行的線速度解析:由題述地球質(zhì)量約為月球質(zhì)量的81倍,地球半徑約為月球半徑的3.7倍,由公式Geq\f(Mm,R2)=mg,可得月球外表的重力加速度約為地球外表重力加速度的eq\f(1,6),即g月=1.6m/s2.由v2=2g月h,解得此探測(cè)器在著陸瞬間的速度v=3.6m/s,選項(xiàng)A錯(cuò)誤;由平衡條
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國(guó)商用組合高速烤箱行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年中國(guó)UT斯達(dá)康X26行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025年泰美尼片項(xiàng)目可行性研究報(bào)告
- 中國(guó)梭織裙子行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及投資方向研究報(bào)告
- DVD光盤(pán)項(xiàng)目可行性研究報(bào)告
- 防火材料生產(chǎn)生產(chǎn)效率評(píng)估報(bào)告
- 年生產(chǎn)塑料包裝袋50萬(wàn)只項(xiàng)目申請(qǐng)報(bào)告可行性研究報(bào)告
- 中國(guó)民營(yíng)銀行未來(lái)發(fā)展趨勢(shì)分析及投資規(guī)劃建議研究報(bào)告
- 三聚氰胺紙項(xiàng)目可行性研究報(bào)告
- 卷簾項(xiàng)目可行性研究報(bào)告
- 2024年醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范培訓(xùn)課件
- DB11T 1136-2023 城鎮(zhèn)燃?xì)夤艿婪D(zhuǎn)內(nèi)襯修復(fù)工程施工及驗(yàn)收規(guī)程
- 2025屆浙江省兩校高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析
- 2023年新高考(新課標(biāo))全國(guó)2卷數(shù)學(xué)試題真題(含答案解析)
- 零部件測(cè)繪與 CAD成圖技術(shù)(中職組)沖壓機(jī)任務(wù)書(shū)
- GB/T 19228.1-2024不銹鋼卡壓式管件組件第1部分:卡壓式管件
- 2024年騎電動(dòng)車(chē)撞傷人私了協(xié)議書(shū)范文
- 四年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)及答案
- 繪本教學(xué)課件
- 2024年中國(guó)不銹鋼炒鍋市場(chǎng)調(diào)查研究報(bào)告
- 江蘇省南通市2023-2024學(xué)年小升初語(yǔ)文試卷(含答案)
評(píng)論
0/150
提交評(píng)論