2023屆廣東省佛山市超盈實驗中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
2023屆廣東省佛山市超盈實驗中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
2023屆廣東省佛山市超盈實驗中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
2023屆廣東省佛山市超盈實驗中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
2023屆廣東省佛山市超盈實驗中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.2.下列函數(shù)中為奇函數(shù),且在定義域上是增函數(shù)是()A. B.C. D.3.已知全集,集合,則A. B.C. D.4.已知則當(dāng)最小時的值時A.﹣3 B.3C.﹣1 D.15.已知函數(shù),若,且當(dāng)時,則的取值范圍是A. B.C. D.6.若,,則的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.函數(shù)的最小值為()A. B.C.0 D.8.一條側(cè)棱垂直于底面的三棱錐P﹣ABC的三視圖不可能是()A.直角三角形B.等邊三角形C.菱形D.頂角是90°的等腰三角形9.函數(shù)的大致圖象是A. B.C. D.10.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知角的終邊經(jīng)過點,且,則t的值為______12.設(shè)函數(shù),若關(guān)于x的方程有且僅有6個不同的實根.則實數(shù)a的取值范圍是_______.13.函數(shù)的最小值為__________14.已知集合A={x|2x>1},B={x|log2x<0},則?AB=___15.=___________三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.某自然資源探險組織試圖穿越某峽谷,但峽谷內(nèi)被某致命昆蟲所侵?jǐn)_,為了穿越這個峽谷,該探險組織進(jìn)行了詳細(xì)的調(diào)研,若每平方米的昆蟲數(shù)量記為昆蟲密度,調(diào)研發(fā)現(xiàn),在這個峽谷中,昆蟲密度是時間(單位:小時)的一個連續(xù)不間斷的函數(shù)其函數(shù)表達(dá)式為,其中時間是午夜零點后的小時數(shù),為常數(shù).(1)求的值;(2)求出昆蟲密度的最小值和出現(xiàn)最小值的時間;(3)若昆蟲密度不超過1250只/平方米,則昆蟲的侵?jǐn)_是非致命性的,那么在一天24小時內(nèi)哪些時間段,峽谷內(nèi)昆蟲出現(xiàn)非致命性的侵?jǐn)_.17.(1)已知,化簡:;(2)已知,證明:18.已知兩條直線(1)若,求實數(shù)的值;(2)若,求實數(shù)的值19.已知,,第三象限角,.求:(1)的值;(2)的值20.已知為上的奇函數(shù),為上的偶函數(shù),且滿足,其中為自然對數(shù)的底數(shù).(1)求函數(shù)和的解析式;(2)若不等式在恒成立,求實數(shù)的取值范圍.21.已知(1)若在第三象限,求的值(2)求的值

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】先考慮函數(shù)在上是增函數(shù),再利用復(fù)合函數(shù)的單調(diào)性得出求解即可.【詳解】設(shè)函數(shù)在上是增函數(shù),解得故選:A【點睛】本題主要考查了由復(fù)合函數(shù)的單調(diào)性求參數(shù)范圍,屬于中檔題.2、D【解析】結(jié)合基本初等函數(shù)的單調(diào)性及奇偶性分別檢驗各選項即可判斷【詳解】對于函數(shù),定義域為,且,所以函數(shù)為偶函數(shù),不符合題意;對于在定義域上不單調(diào),不符合題意;對于在定義域上不單調(diào),不符合題意;對于,由冪函數(shù)的性質(zhì)可知,函數(shù)在定義域上為單調(diào)遞增的奇函數(shù),符合題意故選:D3、C【解析】由集合,根據(jù)補集和并集定義即可求解.【詳解】因為,即集合由補集的運算可知根據(jù)并集定義可得故選:C【點睛】本題考查了補集和并集的簡單運算,屬于基礎(chǔ)題.4、B【解析】由題目已知可得:當(dāng)時,的值最小故選5、B【解析】首先確定函數(shù)的解析式,然后確定的取值范圍即可.【詳解】由題意可知函數(shù)關(guān)于直線對稱,則,據(jù)此可得,由于,故令可得,函數(shù)的解析式為,則,結(jié)合三角函數(shù)的性質(zhì),考查臨界情況:當(dāng)時,;當(dāng)時,;則的取值范圍是.本題選擇B選項.【點睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.6、D【解析】根據(jù)同角三角函數(shù)關(guān)系式,化簡,結(jié)合三角函數(shù)在各象限的符號,即可判斷的終邊所在的象限.【詳解】根據(jù)同角三角函數(shù)關(guān)系式而所以故的終邊在第四象限故選:D【點睛】本題考查了根據(jù)三角函數(shù)符號判斷角所在的象限,屬于基礎(chǔ)題.7、C【解析】利用對數(shù)函數(shù)單調(diào)性得出函數(shù)在時取得最小值【詳解】,因為是增函數(shù),因此當(dāng)時,,,當(dāng)時,,,而時,,所以時,故選:C8、C【解析】直接利用空間圖形和三視圖之間的轉(zhuǎn)換的應(yīng)用求出結(jié)果【詳解】由于三棱錐P﹣ABC的一條側(cè)棱垂直于底面,所以無論怎樣擺放,該三視圖都為三角形,不可能為菱形故選:C【點睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查學(xué)生的空間想象能力,屬于基礎(chǔ)題9、D【解析】關(guān)于對稱,且時,,故選D10、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、##0.5625【解析】根據(jù)誘導(dǎo)公式得sinα=-,再由任意角三角函數(shù)定義列方程求解即可.【詳解】因為,所以sinα=-.又角α的終邊過點P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案為:.12、或或【解析】作出函數(shù)的圖象,設(shè),分關(guān)于有兩個不同的實數(shù)根、,和兩相等實數(shù)根進(jìn)行討論,當(dāng)方程有兩個相等的實數(shù)根時,再檢驗,當(dāng)方程有兩個不同的實數(shù)根、時,或,再由二次方程實數(shù)根的分布進(jìn)行討論求解即可.【詳解】作出函數(shù)的簡圖如圖,令,要使關(guān)于的方程有且僅有個不同的實根,(1)當(dāng)方程有兩個相等的實數(shù)根時,由,即,此時當(dāng),此時,此時由圖可知方程有4個實數(shù)根,此時不滿足.當(dāng),此時,此時由圖可知方程有6個實數(shù)根,此時滿足條件.(2)當(dāng)方程有兩個不同的實數(shù)根、時,則或當(dāng)時,由可得則的根為由圖可知當(dāng)時,方程有2個實數(shù)根當(dāng)時,方程有4個實數(shù)根,此時滿足條件.當(dāng)時,設(shè)由,則,即綜上所述:滿足條件的實數(shù)a的取值范圍是或或故答案為:或或【點睛】關(guān)鍵點睛:本題考查利用復(fù)合型二次函數(shù)的零點個數(shù)求參數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,解答本題的關(guān)鍵由條件結(jié)合函數(shù)的圖象,分析方程的根情況及其范圍,再由二次方程實數(shù)根的分布解決問題,屬于難題.13、【解析】所以,當(dāng),即時,取得最小值.所以答案應(yīng)填:.考點:1、對數(shù)的運算;2、二次函數(shù)的最值.14、[1,+∞)【解析】由指數(shù)函數(shù)的性質(zhì)化簡集合;由對數(shù)函數(shù)的性質(zhì)化簡集合,利用補集的定義求解即可.【詳解】,所以,故答案為.【點睛】研究集合問題,一定要抓住元素,看元素應(yīng)滿足的屬性.研究兩集合的關(guān)系時,關(guān)鍵是將兩集合的關(guān)系轉(zhuǎn)化為元素間的關(guān)系,本題實質(zhì)求滿足屬于集合且不屬于集合的元素的集合.15、【解析】tan240°=tan(180°+60°)=tan60°=,故答案為:三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)(2)昆蟲密度的最小值為0,出現(xiàn)最小值的時間為和(3)至至【解析】(1)由題意得,解出即可;(2)將看成一個整體,將函數(shù)轉(zhuǎn)化為二次函數(shù),根據(jù)二次函數(shù)的單調(diào)性即可得出結(jié)論;(3)解不等式即可得出結(jié)論【詳解】解:(1)因為它是一個連續(xù)不間斷的函數(shù),所以當(dāng)時,得到,即;(2)當(dāng)時,,,則當(dāng)時,達(dá)到最小值0,,解得,所以在和時,昆蟲密度達(dá)到最小值,最小值為0;(3)時,令,得,即,即,即,解得,,因為,令得,令得所以,所以,在至至內(nèi),峽谷內(nèi)昆蟲出現(xiàn)非致命性的侵?jǐn)_【點睛】本題主要考查分段函數(shù)在實際問題中的應(yīng)用,同時考查了三角函數(shù)的應(yīng)用,屬于中檔題17、(1)0;(2)證明見解析.【解析】(1)由給定條件確定出,值的正負(fù)及大小,再利用二倍角公式化簡計算即得;(2)由給定角求出,利用和角公式變形,再展開所證等式的左邊代入計算即得.【詳解】(1)因,則,則原式;(2)因,則,即,亦即,則,所以原等式成立.18、(1);(2).【解析】(1)本小題考查兩直線平行的性質(zhì),當(dāng)兩直線的斜率存在且兩直線平行時,他們的斜率相等,注意截距不相等;由,得或-1,經(jīng)檢驗,均滿足;(2)本小題考查兩直線垂直的性質(zhì),當(dāng)兩直線斜率存在時,兩直線的斜率之積為,注意斜率不存在的情況;由于直線的斜率存在,所以,由此即可求出結(jié)果.試題解析:(1)因為直線的斜率存在,又∵,∴,∴或,兩條直線在軸是的截距不相等,所以或滿足兩條直線平行;(2)因為兩條直線互相垂直,且直線的斜率存在,所以,即,解得.點睛:設(shè)平面上兩條直線的方程分別為;

比值法:和相交;和垂直;和平行;和重合

斜率法:(條件:兩直線斜率都存在,則可化成點斜式)與相交;與平行;與重合;與垂直;19、(1)(2)【解析】(1)利用給定條件結(jié)合同角公式求,再利用二倍角正弦公式計算即得;(2)由條件求出,由(1)求出,再借助和角的余弦公式計算即得.【小問1詳解】因為是第三象限角,,則所以,【小問2詳解】因為,,則,又,所以20、(1),;(2).【解析】(1)解方程組即得解;(2)等價于不等式在恒成立,再利用基本不等式求解.【小問1詳解】解:由,得,因為為上的奇函數(shù),為上的偶函數(shù),所以,由,解得,.【小問2詳解】解:因為為上的奇函數(shù),所以轉(zhuǎn)化為,因為在上都為增函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論