




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.2.若函數(shù)在時(shí)取得極值,則()A. B. C. D.3.在棱長(zhǎng)均相等的正三棱柱中,為的中點(diǎn),在上,且,則下述結(jié)論:①;②;③平面平面:④異面直線(xiàn)與所成角為其中正確命題的個(gè)數(shù)為()A.1 B.2 C.3 D.44.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件5.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說(shuō)法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱(chēng)6.若的展開(kāi)式中二項(xiàng)式系數(shù)和為256,則二項(xiàng)式展開(kāi)式中有理項(xiàng)系數(shù)之和為()A.85 B.84 C.57 D.567.已知焦點(diǎn)為的拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于點(diǎn),點(diǎn)在拋物線(xiàn)上,則當(dāng)取得最大值時(shí),直線(xiàn)的方程為()A.或 B.或 C.或 D.8.為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過(guò)統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶(hù),則下列說(shuō)法錯(cuò)誤的是()A.該市總有15000戶(hù)低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶(hù)C.在該市無(wú)業(yè)人員中,低收入家庭有4350戶(hù)D.在該市大于18歲在讀學(xué)生中,低收入家庭有800戶(hù)9.某校在高一年級(jí)進(jìn)行了數(shù)學(xué)競(jìng)賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競(jìng)賽成績(jī):555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競(jìng)賽成績(jī),運(yùn)行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.1210.已知函數(shù)且,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.下列不等式成立的是()A. B. C. D.12.設(shè)全集,集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上恰有4個(gè)不同的零點(diǎn),則正數(shù)的取值范圍是______.14.的展開(kāi)式中含的系數(shù)為_(kāi)_________.(用數(shù)字填寫(xiě)答案)15.已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動(dòng)時(shí),的內(nèi)心的軌跡方程為_(kāi)_________.16.在平面直角坐標(biāo)系中,曲線(xiàn)上任意一點(diǎn)到直線(xiàn)的距離的最小值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線(xiàn)C:x24py(p為大于2的質(zhì)數(shù))的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率為k(k0)的直線(xiàn)交C于A,B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)交y軸于點(diǎn)E,拋物線(xiàn)C在點(diǎn)A,B處的切線(xiàn)相交于點(diǎn)G.記四邊形AEBG的面積為S.(1)求點(diǎn)G的軌跡方程;(2)當(dāng)點(diǎn)G的橫坐標(biāo)為整數(shù)時(shí),S是否為整數(shù)?若是,請(qǐng)求出所有滿(mǎn)足條件的S的值;若不是,請(qǐng)說(shuō)明理由.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.19.(12分)在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;(2)若曲線(xiàn)、交于、兩點(diǎn),是曲線(xiàn)上的動(dòng)點(diǎn),求面積的最大值.20.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,求的面積的值(或最大值).已知的內(nèi)角,,所對(duì)的邊分別為,,,三邊,,與面積滿(mǎn)足關(guān)系式:,且,求的面積的值(或最大值).21.(12分)為提供市民的健身素質(zhì),某市把四個(gè)籃球館全部轉(zhuǎn)為免費(fèi)民用(1)在一次全民健身活動(dòng)中,四個(gè)籃球館的使用場(chǎng)數(shù)如圖,用分層抽樣的方法從四場(chǎng)館的使用場(chǎng)數(shù)中依次抽取共25場(chǎng),在中隨機(jī)取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;(2)設(shè)四個(gè)籃球館一個(gè)月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費(fèi)用為元,根據(jù)統(tǒng)計(jì),得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線(xiàn)方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值參考數(shù)據(jù)和公式:,22.(10分)已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.(1)寫(xiě)出曲線(xiàn)的極坐標(biāo)方程;(2)點(diǎn)是曲線(xiàn)上的一點(diǎn),試判斷點(diǎn)與曲線(xiàn)的位置關(guān)系.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
先利用最高點(diǎn)縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的據(jù)圖求式問(wèn)題以及三角函數(shù)的公式變換.據(jù)圖求式問(wèn)題要注意結(jié)合五點(diǎn)法作圖求解.屬于中檔題.2、D【解析】
對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在時(shí)取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)椋?,又函?shù)在時(shí)取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問(wèn)題,屬于??碱}型.3、B【解析】
設(shè)出棱長(zhǎng),通過(guò)直線(xiàn)與直線(xiàn)的垂直判斷直線(xiàn)與直線(xiàn)的平行,推出①的正誤;判斷是的中點(diǎn)推出②正的誤;利用直線(xiàn)與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標(biāo)系求出異面直線(xiàn)與所成角判斷④的正誤.【詳解】解:不妨設(shè)棱長(zhǎng)為:2,對(duì)于①連結(jié),則,即與不垂直,又,①不正確;對(duì)于②,連結(jié),,在中,,而,是的中點(diǎn),所以,②正確;對(duì)于③由②可知,在中,,連結(jié),易知,而在中,,,即,又,面,平面平面,③正確;以為坐標(biāo)原點(diǎn),平面上過(guò)點(diǎn)垂直于的直線(xiàn)為軸,所在的直線(xiàn)為軸,所在的直線(xiàn)為軸,建立如圖所示的直角坐標(biāo)系;,,,,,;,;異面直線(xiàn)與所成角為,,故.④不正確.故選:.【點(diǎn)睛】本題考查命題的真假的判斷,棱錐的結(jié)構(gòu)特征,直線(xiàn)與平面垂直,直線(xiàn)與直線(xiàn)的位置關(guān)系的應(yīng)用,考查空間想象能力以及邏輯推理能力.4、A【解析】
根據(jù)對(duì)數(shù)的運(yùn)算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無(wú)法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點(diǎn)睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰(shuí)大誰(shuí)必要,誰(shuí)小誰(shuí)充分”的原則,判斷命題p與命題q的關(guān)系.5、B【解析】
根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗(yàn)證,A.若,則,由,得,但.B.由,,確定,再求解驗(yàn)證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計(jì)算是否為0.【詳解】因?yàn)楹瘮?shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因?yàn)?,即,解得,而,故A錯(cuò)誤.由,不妨令,得由,得或當(dāng)時(shí),,不合題意.當(dāng)時(shí),,此時(shí)所以,故B正確.因?yàn)?,函?shù),在上是單調(diào)遞增,故C錯(cuò)誤.,故D錯(cuò)誤.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運(yùn)算求解的能力,屬于較難的題.6、A【解析】
先求,再確定展開(kāi)式中的有理項(xiàng),最后求系數(shù)之和.【詳解】解:的展開(kāi)式中二項(xiàng)式系數(shù)和為256故,要求展開(kāi)式中的有理項(xiàng),則則二項(xiàng)式展開(kāi)式中有理項(xiàng)系數(shù)之和為:故選:A【點(diǎn)睛】考查二項(xiàng)式的二項(xiàng)式系數(shù)及展開(kāi)式中有理項(xiàng)系數(shù)的確定,基礎(chǔ)題.7、A【解析】
過(guò)作與準(zhǔn)線(xiàn)垂直,垂足為,利用拋物線(xiàn)的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線(xiàn)相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過(guò)作與準(zhǔn)線(xiàn)垂直,垂足為,,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線(xiàn)相切,易知此時(shí)直線(xiàn)的斜率存在,設(shè)切線(xiàn)方程為,則.則,則直線(xiàn)的方程為.故選:A.【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,涉及到拋物線(xiàn)的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.8、D【解析】
根據(jù)給出的統(tǒng)計(jì)圖表,對(duì)選項(xiàng)進(jìn)行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶(hù),所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶(hù)),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶(hù)),B正確,該市無(wú)業(yè)人員中,低收入家庭有15000×29%%=4350(戶(hù)),C正確,該市大于18歲在讀學(xué)生中,低收入家庭有15000×4%=600(戶(hù)),D錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查對(duì)統(tǒng)計(jì)圖表的認(rèn)識(shí)和分析,這類(lèi)題要認(rèn)真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】
根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【詳解】由題意可得的取值為成績(jī)大于等于90的人數(shù),的取值為成績(jī)大于等于60且小于90的人數(shù),故,,所以.故選:D【點(diǎn)睛】本小題考查利用程序框圖計(jì)算統(tǒng)計(jì)量等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識(shí).10、B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.11、D【解析】
根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對(duì)于,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,,錯(cuò)誤;對(duì)于,,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問(wèn)題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.12、D【解析】
求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點(diǎn)睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】
求出函數(shù)的零點(diǎn),讓正數(shù)零點(diǎn)從小到大排列,第三個(gè)正數(shù)零點(diǎn)落在區(qū)間上,第四個(gè)零點(diǎn)在區(qū)間外即可.【詳解】由,得,,,,∵,∴,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),根據(jù)正弦函數(shù)性質(zhì)求出函數(shù)零點(diǎn),然后題意,把正數(shù)零點(diǎn)從小到大排列,由于0已經(jīng)是一個(gè)零點(diǎn),因此只有前3個(gè)零點(diǎn)在區(qū)間上.由此可得的不等關(guān)系,從而得出結(jié)論,本題解法屬于中檔題.14、【解析】由題意得,二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,則,所以得系數(shù)為.15、【解析】
考查更為一般的問(wèn)題:設(shè)P為橢圓C:上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),為△PF1F2的內(nèi)心,求點(diǎn)I的軌跡方程.解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點(diǎn)為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,,則.直線(xiàn)IF1與IF2的斜率之積:,而根據(jù)海倫公式,有△PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點(diǎn)的軌跡是以F1F2為長(zhǎng)軸,離心率e滿(mǎn)足的橢圓,其標(biāo)準(zhǔn)方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有.消去θ得到點(diǎn)I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.16、【解析】
解法一:曲線(xiàn)上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線(xiàn)的距離的最小值;解法二:曲線(xiàn)函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線(xiàn)的距離即可所求答案.【詳解】解法一(基本不等式):在曲線(xiàn)上任取一點(diǎn),該點(diǎn)到直線(xiàn)的距離為,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,曲線(xiàn)上任意一點(diǎn)到直線(xiàn)距離的最小值為;解法二(導(dǎo)數(shù)法):曲線(xiàn)的函數(shù)解析式為,則,設(shè)過(guò)曲線(xiàn)上任意一點(diǎn)的切線(xiàn)與直線(xiàn)平行,則,解得,當(dāng)時(shí),到直線(xiàn)的距離;當(dāng)時(shí),到直線(xiàn)的距離.所以曲線(xiàn)上任意一點(diǎn)到直線(xiàn)的距離的最小值為.故答案為:.【點(diǎn)睛】本題考查曲線(xiàn)上一點(diǎn)到直線(xiàn)距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線(xiàn)與直線(xiàn)平行來(lái)找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線(xiàn)的距離,也可以設(shè)曲線(xiàn)上的動(dòng)點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)當(dāng)G點(diǎn)橫坐標(biāo)為整數(shù)時(shí),S不是整數(shù).【解析】
(1)先求解導(dǎo)數(shù),得出切線(xiàn)方程,聯(lián)立方程得出交點(diǎn)G的軌跡方程;(2)先求解弦長(zhǎng),再分別求解點(diǎn)到直線(xiàn)的距離,表示出四邊形的面積,結(jié)合點(diǎn)G的橫坐標(biāo)為整數(shù)進(jìn)行判斷.【詳解】(1)設(shè),則,拋物線(xiàn)C的方程可化為,則,所以曲線(xiàn)C在點(diǎn)A處的切線(xiàn)方程為,在點(diǎn)B處的切線(xiàn)方程為,因?yàn)閮汕芯€(xiàn)均過(guò)點(diǎn)G,所以,所以A,B兩點(diǎn)均在直線(xiàn)上,所以直線(xiàn)AB的方程為,又因?yàn)橹本€(xiàn)AB過(guò)點(diǎn)F(0,p),所以,即G點(diǎn)軌跡方程為;(2)設(shè)點(diǎn)G(,),由(1)可知,直線(xiàn)AB的方程為,即,將直線(xiàn)AB的方程與拋物線(xiàn)聯(lián)立,,整理得,所以,,解得,因?yàn)橹本€(xiàn)AB的斜率,所以,且,線(xiàn)段AB的中點(diǎn)為M,所以直線(xiàn)EM的方程為:,所以E點(diǎn)坐標(biāo)為(0,),直線(xiàn)AB的方程整理得,則G到AB的距離,則E到AB的距離,所以,設(shè),因?yàn)閜是質(zhì)數(shù),且為整數(shù),所以或,當(dāng)時(shí),,是無(wú)理數(shù),不符題意,當(dāng)時(shí),,因?yàn)楫?dāng)時(shí),,即是無(wú)理數(shù),所以不符題意,當(dāng)時(shí),是無(wú)理數(shù),不符題意,綜上,當(dāng)G點(diǎn)橫坐標(biāo)為整數(shù)時(shí),S不是整數(shù).【點(diǎn)睛】本題主要考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,拋物線(xiàn)中的切線(xiàn)問(wèn)題通常借助導(dǎo)數(shù)來(lái)求解,四邊形的面積問(wèn)題一般轉(zhuǎn)化為三角形的面積和問(wèn)題,表示出面積的表達(dá)式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1)見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
(1),分,,,四種情況討論即可;(2)問(wèn)題轉(zhuǎn)化為,利用導(dǎo)數(shù)找到與即可證明.【詳解】(1).①當(dāng)時(shí),恒成立,當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù).②當(dāng)時(shí),,.當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當(dāng)時(shí),,則在上是減函數(shù).④當(dāng)時(shí),,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當(dāng),時(shí),,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問(wèn)題,考查學(xué)生邏輯推理能力,是一道較難的題.19、(1),;(2).【解析】
(1)在曲線(xiàn)的參數(shù)方程中消去參數(shù),可得出曲線(xiàn)的普通方程,將曲線(xiàn)的極坐標(biāo)方程變形為,進(jìn)而可得出曲線(xiàn)的直角坐標(biāo)方程;(2)求出點(diǎn)到直線(xiàn)的最大距離,以及直線(xiàn)截圓所得弦長(zhǎng),利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線(xiàn)的參數(shù)方程得,.所以,曲線(xiàn)的普通方程為,將曲線(xiàn)的極坐標(biāo)方程變形為,所以,曲線(xiàn)的直角坐標(biāo)方程為;(2)曲線(xiàn)是圓心為,半徑為為圓,圓心到直線(xiàn)的距離為,所以,點(diǎn)到直線(xiàn)的最大距離為,,因此,的面積為最大值為.【點(diǎn)睛】本題考查曲
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 稀土金屬壓延加工中的質(zhì)量改進(jìn)方法選擇與實(shí)施考核試卷
- 游樂(lè)設(shè)施施工中的安全文化建設(shè)考核試卷
- 木片在紙漿生產(chǎn)中的優(yōu)化研究考核試卷
- 搪瓷制品的環(huán)保生產(chǎn)與廢棄物處理考核試卷
- 生態(tài)保護(hù)宣傳教育策略考核試卷
- 青浦區(qū)高三語(yǔ)文二模2021作文
- 電飯煲煮飯不熟應(yīng)對(duì)考核試卷
- 浙江省J12共同體聯(lián)盟校初三語(yǔ)文中考模擬考試試卷(含答案)
- 家用電器具的材料腐蝕與防護(hù)考核試卷
- 管道工程行業(yè)熱點(diǎn)問(wèn)題研究動(dòng)向與趨勢(shì)預(yù)測(cè)考核試卷
- 2023技規(guī)選擇題庫(kù)(內(nèi)附答案)
- 建筑物拆除場(chǎng)地清理垃圾外運(yùn)施工方案
- 部門(mén)級(jí)安全培訓(xùn)試題及答案可打印
- 康復(fù)輔具適配服務(wù)體系建設(shè)
- 歷史人教部編版八年級(jí)(上冊(cè))第13課五四運(yùn)動(dòng)課件(23張)2024版新教材
- 2024-2025學(xué)年秋季第一學(xué)期1530安全教育記錄(第一、二、三周安全教育記錄表)
- 小學(xué)語(yǔ)文“跨學(xué)科學(xué)習(xí)任務(wù)群”內(nèi)涵及解讀
- 地基基礎(chǔ)基樁靜荷載試驗(yàn)考試題庫(kù)
- 湖北省孝感市孝南區(qū)2023-2024學(xué)年八年級(jí)下學(xué)期期中數(shù)學(xué)試題
- 大數(shù)據(jù)時(shí)代下傳統(tǒng)會(huì)計(jì)受到的沖擊與應(yīng)對(duì)措施
- QC-T 911-2023 電源車(chē)標(biāo)準(zhǔn)規(guī)范
評(píng)論
0/150
提交評(píng)論