921一元一次不等式的概念和解法課件_第1頁
921一元一次不等式的概念和解法課件_第2頁
921一元一次不等式的概念和解法課件_第3頁
921一元一次不等式的概念和解法課件_第4頁
921一元一次不等式的概念和解法課件_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

9.2.1一元一次不等式的概念和解法

韶關市一中實驗學校

黃一平9.2.1一元一次不等式的概念和解法

韶關市一中實驗學校1一元一次不等式的概念和解法某次知識競賽中共有20道題,對于每一道題,答對了得10分,答錯了或不答倒扣5分,若某同學得分80分.(1)如果設他答對了x道題,請寫出x所滿

足的關系式;(2)這個關系式我們稱之為什么?如果把某同學”得分80分”改成”至少得80分”,其他條件不變.(1)你又可以得出什么關系式?(2)這個關系式叫做什么?一元一次方程一元一次不等式一元一次不等式的概念和解法某次知識競賽中共有20道題,對于每2學習目標:

1、通過類比一元一次方程的概念,了解一元一次不等式的概念;2、通過類比一元一次方程的解法,掌握一元一次不等式的解法;一元一次不等式的概念和解法學習目標:一元一次不等式的概念和解法3活動一:一元一次不等式的概念

問題1:認識下面的方程嗎?問題2:說出一元一次方程的定義.其中元和

次分別指的是什么?等號兩邊是什么式子?一元一次不等式的概念活動一:一元一次不等式的概念一元一次不等式的概念4問題3:觀察下列各式,指出它們和一元一次方

程的異同點,能否根據它們的共同點給它們起個名字?【歸納1】一元一次不等式概念:

含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.一元一次不等式的概念不等號的兩邊都是整式問題3:觀察下列各式,指出它們和一元一次方一元一次不等式的5【鞏固】下列各式是一元一次不等式嗎?

并說明你判斷的理由;

一元一次不等式的概念????????【鞏固】下列各式是一元一次不等式嗎?一元一次不等式的概念??6判斷點1:是不是不等式?判斷點2:含有幾個未知數(shù)?

每個未知數(shù)的項的次數(shù)是幾次?判斷點3:不等號的兩邊是

一元一次不等式的概念不等號1個1次整式判斷點1:是不是不等式?一元一次不等式的概念不等號1個1次整7活動二:一元一次不等式的解法問題1:你能否類比課前復習的第2題解方程的步

驟,并參照課本P122例題,解下列不等式.解:去括號,得:

移項,得:

合并同類項,得:

系數(shù)化為1,得:思考:解一元一次不等式和解一元一次方程步驟上有沒有類似的地方?一元一次不等式的解法活動二:一元一次不等式的解法一元一次不等式的解法8問題3:解方程和不等式,并寫出每一步的步驟和依據:一元一次不等式的解法步驟解題過程依據步驟解題過程依據問題3:解方程和不等式,并寫出每一步的步驟和依據:一元一次不9思考:①你能總結出解一元一次不等式的步驟么?1、去分母2、去括號3、移項4、合并同類項5、系數(shù)化為1一元一次不等式的解法去分母去括號移項合并同類項系數(shù)化為1

根據不等式的性質2、3

根據乘法分配律

根據不等式的性質1

根據合并同類項法則

根據不等式的性質2、3思考:一元一次不等式的解法去分母去括號移項合并同類項系數(shù)化為10②解一元一次不等式和解一元一次方程的步

驟上異同點什么?相同點:步驟相同不同點:去分母和系數(shù)化為1時,兩邊同乘或除以一個

負數(shù)時,不等號的方向要改變.【歸納2】解一元一次方程,要根據等式的性質,將方程化為

的形式;而解一元一次不等式,則要根

據不等式的性質,將不等式化為

的形式一元一次不等式的解法②解一元一次不等式和解一元一次方程的步一元一次不等式的解法11【鞏固】易錯易混,反思提高對不等式

給出了以下解答:解:去分母,得:移項,得:

合并同類項,得:

系數(shù)化為1,得:一元一次不等式的解法【鞏固】易錯易混,反思提高一元一次不等式的解法12【鞏固】易錯易混,反思提高對不等式

給出了以下解答:解:去分母,得:

去括號,得:

移項,得:

合并同類項,得:

系數(shù)化為1,得:一元一次不等式的解法【鞏固】易錯易混,反思提高一元一次不等式的解法13【鞏固】解下列一元一次不等式,并在數(shù)軸

上表示解集.(1)(2)(3)思考:解一元一次不等式的易錯點是什么?一元一次不等式的解法【鞏固】解下列一元一次不等式,并在數(shù)軸一元一次不等式的解法14自我總結:

1、本節(jié)課學習了哪些內容?2、本節(jié)課的學習目標你達成了么?3、回顧本節(jié)課的易錯點在哪里?一元一次不等式的概念和解法自我總結:一元一次不等式的概念和解法15

再見!再見!169.2.1一元一次不等式的概念和解法

韶關市一中實驗學校

黃一平9.2.1一元一次不等式的概念和解法

韶關市一中實驗學校17一元一次不等式的概念和解法某次知識競賽中共有20道題,對于每一道題,答對了得10分,答錯了或不答倒扣5分,若某同學得分80分.(1)如果設他答對了x道題,請寫出x所滿

足的關系式;(2)這個關系式我們稱之為什么?如果把某同學”得分80分”改成”至少得80分”,其他條件不變.(1)你又可以得出什么關系式?(2)這個關系式叫做什么?一元一次方程一元一次不等式一元一次不等式的概念和解法某次知識競賽中共有20道題,對于每18學習目標:

1、通過類比一元一次方程的概念,了解一元一次不等式的概念;2、通過類比一元一次方程的解法,掌握一元一次不等式的解法;一元一次不等式的概念和解法學習目標:一元一次不等式的概念和解法19活動一:一元一次不等式的概念

問題1:認識下面的方程嗎?問題2:說出一元一次方程的定義.其中元和

次分別指的是什么?等號兩邊是什么式子?一元一次不等式的概念活動一:一元一次不等式的概念一元一次不等式的概念20問題3:觀察下列各式,指出它們和一元一次方

程的異同點,能否根據它們的共同點給它們起個名字?【歸納1】一元一次不等式概念:

含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.一元一次不等式的概念不等號的兩邊都是整式問題3:觀察下列各式,指出它們和一元一次方一元一次不等式的21【鞏固】下列各式是一元一次不等式嗎?

并說明你判斷的理由;

一元一次不等式的概念????????【鞏固】下列各式是一元一次不等式嗎?一元一次不等式的概念??22判斷點1:是不是不等式?判斷點2:含有幾個未知數(shù)?

每個未知數(shù)的項的次數(shù)是幾次?判斷點3:不等號的兩邊是

一元一次不等式的概念不等號1個1次整式判斷點1:是不是不等式?一元一次不等式的概念不等號1個1次整23活動二:一元一次不等式的解法問題1:你能否類比課前復習的第2題解方程的步

驟,并參照課本P122例題,解下列不等式.解:去括號,得:

移項,得:

合并同類項,得:

系數(shù)化為1,得:思考:解一元一次不等式和解一元一次方程步驟上有沒有類似的地方?一元一次不等式的解法活動二:一元一次不等式的解法一元一次不等式的解法24問題3:解方程和不等式,并寫出每一步的步驟和依據:一元一次不等式的解法步驟解題過程依據步驟解題過程依據問題3:解方程和不等式,并寫出每一步的步驟和依據:一元一次不25思考:①你能總結出解一元一次不等式的步驟么?1、去分母2、去括號3、移項4、合并同類項5、系數(shù)化為1一元一次不等式的解法去分母去括號移項合并同類項系數(shù)化為1

根據不等式的性質2、3

根據乘法分配律

根據不等式的性質1

根據合并同類項法則

根據不等式的性質2、3思考:一元一次不等式的解法去分母去括號移項合并同類項系數(shù)化為26②解一元一次不等式和解一元一次方程的步

驟上異同點什么?相同點:步驟相同不同點:去分母和系數(shù)化為1時,兩邊同乘或除以一個

負數(shù)時,不等號的方向要改變.【歸納2】解一元一次方程,要根據等式的性質,將方程化為

的形式;而解一元一次不等式,則要根

據不等式的性質,將不等式化為

的形式一元一次不等式的解法②解一元一次不等式和解一元一次方程的步一元一次不等式的解法27【鞏固】易錯易混,反思提高對不等式

給出了以下解答:解:去分母,得:移項,得:

合并同類項,得:

系數(shù)化為1,得:一元一次不等式的解法【鞏固】易錯易混,反思提高一元一次不等式的解法28【鞏固】易錯易混,反思提高對不等式

給出了以下解答:解:去分母,得:

去括號,得:

移項,得:

合并同類項,得:

系數(shù)化為1,得:一元一次不等式的解法【鞏固】易錯易混,反思提高一元一次不等式的解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論