




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Unit1:PolynomialFunctions
Lesson3:DividingPolynomialsUnit1:PolynomialFunctions
LLongDivisionDoyourememberlongdivision?Let’sreviewitbydividing589by331289271961813willgointo5once3willgointo28ninetimes3willgointo19sixtimesBringdownthe8Bringdownthe9So,589÷3=196witharemainderof1(3×1=3)with2leftoverwith1leftover(3×9=27)with1leftover(3×6=18)LongDivisionDoyourememberlLongDivisionRecapInthepreviousexample:Thedividendwas589WhatisbeingdividedThedivisorwas3WhatisdividingintothedividendThequotientwas196TheanswerTheremainderwas1What’sleftoverDivisionformula:Dividend=divisor×quotient+remainderi.e.589=3×196+1LongDivisionRecapIntheprevDividingPolynomialsbyBinomialsPolynomialsarealgebraicexpressionswithmanytermsx3+2x2–x+5x4-6x3–
4x2+3x–10Binomialsarealgebraicexpressionswithtwotermsx–72x+1WecandivideapolynomialbyabinomialusingthesamelongdivisionprocessweusefornumbersDividingPolynomialsbyBinomiExample1Divide-3x2+2x3+8x–12byx–1Beforewebegin,writethepolynomialinorderofdescendingpowers:2x3–3x2+8x–12Example1Divide-3x2+2x3+8Example1:SolutionDivide2x3byxtoget2x22x2Multiplyx–1by2x2
toget2x3–2x22x3–2x
2Subtract.Bringdownthenextterm–x
2+8xDivide–x2byxtoget-xMultiplyx–1by-x
toget–x2+xSubtract.Bringdownthenextterm–x
–x2+x7x–12Divide7xbyxtoget7Multiplyx–1by7
toget7x–7Subtract.Theremainderis-57+7x–7–5Example1:SolutionDivide2x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–52x3–3x2+8x–12(x–1)(2x2–x+7)=Example1:SolutionBasedonthExample2Divide4x3+9x–12by2x+1Noticethatthere’snox2termBeforewebegin,writein0x2asaplaceholder4x3+0x2+9x–12Example2Divide4x3+9x–12Example2:SolutionDivide4x3by2xtoget2x22x2Multiply2x+1by2x2
toget4x3+2x24x3+2x
2Subtract.Bringdownthenextterm–2x
2+9xDivide–2x2by2xtoget-xMultiply2x+1by-x
toget-2x2-xSubtract.Bringdownthenextterm–x
–2x2–x10x–12Divide10xby2xtoget5Multiply2x+1by5
toget10x+5Subtract.Theremainderis-175+10x+5–17Example2:SolutionDivide4x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–174x3+9x–12(2x+1)(2x2–x+5)=Example1:SolutionBasedonthTheRemainderTheoremWhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisacannotbezeroaandbareintegersTheRemainderTheoremWhenaPoExample3VerifytheremaindertheoremusingExamples1&2Example3VerifytheremainderExample3:SolutionInExample1wedivided -3x2+2x3+8x–12byx–1ThereforeAndwewanttofindP(1)Ourremainderwas–5.Example3:SolutionInExampleExample3:SolutionInExample2wedivided4x3+9x–12by2x+1ThereforeAndwewanttofindOurremainderwas–17.Example3:SolutionInExampleSummaryPolynomialscanbedividedbybinomialusingthelongdivisiontechniqueweusefornumbersBeforedividing……writethepolynomialinorderofdescendingpowers(seeExample1)…putazeroinfrontofanymissingterms(seeExample2)WhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisP(b/a)knownastheRemainderTheoremSummaryPolynomialscanbediviPracticeProblemsP.91-92#1-3a,7-9bc,10Note:For#1-3a,donotexpressyouranswerinquotientform.IwantyoutowriteyouranswerslikeIdidinExamples1&2(usingthedivisionformula).So,whenyoucheckyouranswersinthebackofthetext,checktheanswerforpartc(notparta)PracticeProblemsP.91-92#1-3Unit1:PolynomialFunctions
Lesson3:DividingPolynomialsUnit1:PolynomialFunctions
LLongDivisionDoyourememberlongdivision?Let’sreviewitbydividing589by331289271961813willgointo5once3willgointo28ninetimes3willgointo19sixtimesBringdownthe8Bringdownthe9So,589÷3=196witharemainderof1(3×1=3)with2leftoverwith1leftover(3×9=27)with1leftover(3×6=18)LongDivisionDoyourememberlLongDivisionRecapInthepreviousexample:Thedividendwas589WhatisbeingdividedThedivisorwas3WhatisdividingintothedividendThequotientwas196TheanswerTheremainderwas1What’sleftoverDivisionformula:Dividend=divisor×quotient+remainderi.e.589=3×196+1LongDivisionRecapIntheprevDividingPolynomialsbyBinomialsPolynomialsarealgebraicexpressionswithmanytermsx3+2x2–x+5x4-6x3–
4x2+3x–10Binomialsarealgebraicexpressionswithtwotermsx–72x+1WecandivideapolynomialbyabinomialusingthesamelongdivisionprocessweusefornumbersDividingPolynomialsbyBinomiExample1Divide-3x2+2x3+8x–12byx–1Beforewebegin,writethepolynomialinorderofdescendingpowers:2x3–3x2+8x–12Example1Divide-3x2+2x3+8Example1:SolutionDivide2x3byxtoget2x22x2Multiplyx–1by2x2
toget2x3–2x22x3–2x
2Subtract.Bringdownthenextterm–x
2+8xDivide–x2byxtoget-xMultiplyx–1by-x
toget–x2+xSubtract.Bringdownthenextterm–x
–x2+x7x–12Divide7xbyxtoget7Multiplyx–1by7
toget7x–7Subtract.Theremainderis-57+7x–7–5Example1:SolutionDivide2x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–52x3–3x2+8x–12(x–1)(2x2–x+7)=Example1:SolutionBasedonthExample2Divide4x3+9x–12by2x+1Noticethatthere’snox2termBeforewebegin,writein0x2asaplaceholder4x3+0x2+9x–12Example2Divide4x3+9x–12Example2:SolutionDivide4x3by2xtoget2x22x2Multiply2x+1by2x2
toget4x3+2x24x3+2x
2Subtract.Bringdownthenextterm–2x
2+9xDivide–2x2by2xtoget-xMultiply2x+1by-x
toget-2x2-xSubtract.Bringdownthenextterm–x
–2x2–x10x–12Divide10xby2xtoget5Multiply2x+1by5
toget10x+5Subtract.Theremainderis-175+10x+5–17Example2:SolutionDivide4x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–174x3+9x–12(2x+1)(2x2–x+5)=Example1:SolutionBasedonthTheRemainderTheoremWhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisacannotbezeroaandbareintegersTheRemainderTheoremWhenaPoExample3VerifytheremaindertheoremusingExamples1&2Example3VerifytheremainderExample3:SolutionInExample1wedivided -3x2+2x3+8x–12byx–1ThereforeAndwewanttofindP(1)Ourremainderwas–5.Example3:SolutionInExampleExample3:SolutionInExample2wedivided4x3+9x–12by2x+1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024籃球裁判員基礎(chǔ)知識試題及答案
- 全面分析農(nóng)業(yè)植保員考試試題及答案
- 模具設(shè)計師資格考試教育與試題及答案
- 2024年農(nóng)業(yè)植保員資格考試的是否合適試題與答案
- 前行中的體育經(jīng)紀人職業(yè)資格考試試題及答案
- 2024游泳救生員資格考試工作坊與試題及答案
- 人教版初中英語九年級上冊期末測試卷一試題含聽力及答案解析
- 2024年山西省考公務(wù)員考試省直屬崗結(jié)構(gòu)化面試真題試題試卷答案解析
- 2025年銀行從業(yè)資格考試考生經(jīng)驗與教訓(xùn)分享試題及答案
- 模具設(shè)計的成本控制措施試題及答案
- 光學零件制造工藝
- 2024屆高考語文復(fù)習-新高考卷文學類閱讀真題《建水記》《大師》講評
- 八年級道德與法治下冊第一單元堅持憲法至上思維導(dǎo)圖人教部編版
- 2023年山東中煙工業(yè)有限責任公司人員招聘筆試試題及答案解析
- 中考冠詞專項訓(xùn)練100題 (帶答案)
- 幼兒心理學(陳幗眉)期中考試試卷含答案
- 羅盤儀林地測量-羅盤儀林地面積測量(森林調(diào)查技術(shù))
- 電力現(xiàn)貨市場基礎(chǔ)知識
- 公司收支明細表
- 2023年電子產(chǎn)品營銷試題庫
- GB/T 7251.6-2015低壓成套開關(guān)設(shè)備和控制設(shè)備第6部分:母線干線系統(tǒng)(母線槽)
評論
0/150
提交評論