版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Unit1:PolynomialFunctions
Lesson3:DividingPolynomialsUnit1:PolynomialFunctions
LLongDivisionDoyourememberlongdivision?Let’sreviewitbydividing589by331289271961813willgointo5once3willgointo28ninetimes3willgointo19sixtimesBringdownthe8Bringdownthe9So,589÷3=196witharemainderof1(3×1=3)with2leftoverwith1leftover(3×9=27)with1leftover(3×6=18)LongDivisionDoyourememberlLongDivisionRecapInthepreviousexample:Thedividendwas589WhatisbeingdividedThedivisorwas3WhatisdividingintothedividendThequotientwas196TheanswerTheremainderwas1What’sleftoverDivisionformula:Dividend=divisor×quotient+remainderi.e.589=3×196+1LongDivisionRecapIntheprevDividingPolynomialsbyBinomialsPolynomialsarealgebraicexpressionswithmanytermsx3+2x2–x+5x4-6x3–
4x2+3x–10Binomialsarealgebraicexpressionswithtwotermsx–72x+1WecandivideapolynomialbyabinomialusingthesamelongdivisionprocessweusefornumbersDividingPolynomialsbyBinomiExample1Divide-3x2+2x3+8x–12byx–1Beforewebegin,writethepolynomialinorderofdescendingpowers:2x3–3x2+8x–12Example1Divide-3x2+2x3+8Example1:SolutionDivide2x3byxtoget2x22x2Multiplyx–1by2x2
toget2x3–2x22x3–2x
2Subtract.Bringdownthenextterm–x
2+8xDivide–x2byxtoget-xMultiplyx–1by-x
toget–x2+xSubtract.Bringdownthenextterm–x
–x2+x7x–12Divide7xbyxtoget7Multiplyx–1by7
toget7x–7Subtract.Theremainderis-57+7x–7–5Example1:SolutionDivide2x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–52x3–3x2+8x–12(x–1)(2x2–x+7)=Example1:SolutionBasedonthExample2Divide4x3+9x–12by2x+1Noticethatthere’snox2termBeforewebegin,writein0x2asaplaceholder4x3+0x2+9x–12Example2Divide4x3+9x–12Example2:SolutionDivide4x3by2xtoget2x22x2Multiply2x+1by2x2
toget4x3+2x24x3+2x
2Subtract.Bringdownthenextterm–2x
2+9xDivide–2x2by2xtoget-xMultiply2x+1by-x
toget-2x2-xSubtract.Bringdownthenextterm–x
–2x2–x10x–12Divide10xby2xtoget5Multiply2x+1by5
toget10x+5Subtract.Theremainderis-175+10x+5–17Example2:SolutionDivide4x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–174x3+9x–12(2x+1)(2x2–x+5)=Example1:SolutionBasedonthTheRemainderTheoremWhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisacannotbezeroaandbareintegersTheRemainderTheoremWhenaPoExample3VerifytheremaindertheoremusingExamples1&2Example3VerifytheremainderExample3:SolutionInExample1wedivided -3x2+2x3+8x–12byx–1ThereforeAndwewanttofindP(1)Ourremainderwas–5.Example3:SolutionInExampleExample3:SolutionInExample2wedivided4x3+9x–12by2x+1ThereforeAndwewanttofindOurremainderwas–17.Example3:SolutionInExampleSummaryPolynomialscanbedividedbybinomialusingthelongdivisiontechniqueweusefornumbersBeforedividing……writethepolynomialinorderofdescendingpowers(seeExample1)…putazeroinfrontofanymissingterms(seeExample2)WhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisP(b/a)knownastheRemainderTheoremSummaryPolynomialscanbediviPracticeProblemsP.91-92#1-3a,7-9bc,10Note:For#1-3a,donotexpressyouranswerinquotientform.IwantyoutowriteyouranswerslikeIdidinExamples1&2(usingthedivisionformula).So,whenyoucheckyouranswersinthebackofthetext,checktheanswerforpartc(notparta)PracticeProblemsP.91-92#1-3Unit1:PolynomialFunctions
Lesson3:DividingPolynomialsUnit1:PolynomialFunctions
LLongDivisionDoyourememberlongdivision?Let’sreviewitbydividing589by331289271961813willgointo5once3willgointo28ninetimes3willgointo19sixtimesBringdownthe8Bringdownthe9So,589÷3=196witharemainderof1(3×1=3)with2leftoverwith1leftover(3×9=27)with1leftover(3×6=18)LongDivisionDoyourememberlLongDivisionRecapInthepreviousexample:Thedividendwas589WhatisbeingdividedThedivisorwas3WhatisdividingintothedividendThequotientwas196TheanswerTheremainderwas1What’sleftoverDivisionformula:Dividend=divisor×quotient+remainderi.e.589=3×196+1LongDivisionRecapIntheprevDividingPolynomialsbyBinomialsPolynomialsarealgebraicexpressionswithmanytermsx3+2x2–x+5x4-6x3–
4x2+3x–10Binomialsarealgebraicexpressionswithtwotermsx–72x+1WecandivideapolynomialbyabinomialusingthesamelongdivisionprocessweusefornumbersDividingPolynomialsbyBinomiExample1Divide-3x2+2x3+8x–12byx–1Beforewebegin,writethepolynomialinorderofdescendingpowers:2x3–3x2+8x–12Example1Divide-3x2+2x3+8Example1:SolutionDivide2x3byxtoget2x22x2Multiplyx–1by2x2
toget2x3–2x22x3–2x
2Subtract.Bringdownthenextterm–x
2+8xDivide–x2byxtoget-xMultiplyx–1by-x
toget–x2+xSubtract.Bringdownthenextterm–x
–x2+x7x–12Divide7xbyxtoget7Multiplyx–1by7
toget7x–7Subtract.Theremainderis-57+7x–7–5Example1:SolutionDivide2x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–52x3–3x2+8x–12(x–1)(2x2–x+7)=Example1:SolutionBasedonthExample2Divide4x3+9x–12by2x+1Noticethatthere’snox2termBeforewebegin,writein0x2asaplaceholder4x3+0x2+9x–12Example2Divide4x3+9x–12Example2:SolutionDivide4x3by2xtoget2x22x2Multiply2x+1by2x2
toget4x3+2x24x3+2x
2Subtract.Bringdownthenextterm–2x
2+9xDivide–2x2by2xtoget-xMultiply2x+1by-x
toget-2x2-xSubtract.Bringdownthenextterm–x
–2x2–x10x–12Divide10xby2xtoget5Multiply2x+1by5
toget10x+5Subtract.Theremainderis-175+10x+5–17Example2:SolutionDivide4x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–174x3+9x–12(2x+1)(2x2–x+5)=Example1:SolutionBasedonthTheRemainderTheoremWhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisacannotbezeroaandbareintegersTheRemainderTheoremWhenaPoExample3VerifytheremaindertheoremusingExamples1&2Example3VerifytheremainderExample3:SolutionInExample1wedivided -3x2+2x3+8x–12byx–1ThereforeAndwewanttofindP(1)Ourremainderwas–5.Example3:SolutionInExampleExample3:SolutionInExample2wedivided4x3+9x–12by2x+1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能計(jì)量終端項(xiàng)目規(guī)劃申請(qǐng)報(bào)告
- 2025年有聲閱讀項(xiàng)目提案報(bào)告模板
- 2025年抗滴蟲病藥項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模板
- 2025年加氣加注設(shè)備項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 2024-2025學(xué)年西鄉(xiāng)塘區(qū)數(shù)學(xué)三上期末復(fù)習(xí)檢測(cè)模擬試題含解析
- 2025年水質(zhì)分析儀項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 2025年印刷品項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 2025年工業(yè)物聯(lián)網(wǎng)項(xiàng)目提案報(bào)告
- 2025年涂料光亮劑項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告模稿
- 2024年礦山槽探工程承包合同版B版
- 經(jīng)濟(jì)思想史課后習(xí)題答案
- 橋梁1-橋梁組成與分類
- 大學(xué)生就業(yè)與創(chuàng)業(yè)指導(dǎo)課件
- 如何理解歐盟MDR臨床評(píng)價(jià)要求
- (新平臺(tái))國(guó)家開放大學(xué)《政治學(xué)原理》形考任務(wù)1-4參考答案
- 被動(dòng)用法學(xué)習(xí)課件 高中日語(yǔ)人教版第三冊(cè)
- 清華大學(xué)電力系統(tǒng)分析課件孫宏斌
- 高考地理一輪復(fù)習(xí)-人類活動(dòng)與地表形態(tài)(共25張)課件
- 德能勤績(jī)廉量化考核表格范例
- 互聯(lián)網(wǎng)+大賽創(chuàng)新創(chuàng)業(yè)路演PPT課件(帶內(nèi)容)
- 綠色雅致清明節(jié)模板
評(píng)論
0/150
提交評(píng)論