




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
BondMarketandAlternativeInvestmentRules3.1ValuationofBonds3.2TheTermStructureofInterestRates3.3AlternativeInvestmentRules (1)ThePaybackPeriodRule (2)TheAverageAccountingReturn (3)TheInternalRateofReturn (4)TheProfitabilityIndex3.4WhyUseNetPresentValue?(RWJCh.5,6)BondMarketandAlternativeIn3.1ValuationofBondsExample1:Supposeweobservethefollowingbondpricesfordefault-freezerocouponbonds(purediscountbond,withfacevalue$1,000):Howarethebondpricesrelatedwithinterestrates?1yearzero:Price=9262yearzero:Price=8423yearzero:Price=7584yearzero:Price=6831yearbond2yearbond3yearbond4yearbondy1y2y3y4i1i2?i4?i3?(maturitydate)3.1ValuationofBondsExampleThePresentValueFormulasforBondsPureDiscountBondsLevelCouponBondsConsolsforT-maturitybondswithfacevalueF.Sucharateyisknownastheyieldtomaturity(YTM).Theyieldtomaturityisacomplicatedaverageofdifferentratesofinterest.Itcanbeausefulsummarymeasure.
‥‥‥‥‥‥‥‥‥‥(3.1)‥‥(3.2)‥‥‥‥‥‥‥‥‥‥‥‥(3.3)ThePresentValueFormulasforYieldtoMaturityExample1.(continued):wecanconvertbondpricesinto“yieldtomaturity”() hence,
yn=yieldofbondswithnperiodsastimetomaturity,alsocalled“spotrates.”Plotynagainsttimetomaturity(n)”yieldcurve”tosummarizeinformationaboutbondprices(diagram1).
YieldtoMaturityExample1.(co3.2TheTermStructureofInterestRatesFrombondprices,wecancomputeyields,plotthe“yieldcurve”,andcomputetheimpliedforwardrates,.implied“forwardrates”yieldcurveor“spotrates”3.2TheTermStructureofInteForwardRatesisthe“break-even”interestratethatequatesthereturnsonan-periodbondtothatofa(n–1)periodbondrolledoverintoaone-yearbondinyearn.
Forexample,,(geometricmean)or,so asanapproximation(arithmeticmean).Similarly,ForwardRatesisthe“breForecastofFutureInterestCanweuseforwardratesfntoforecastfutureshort-terminterestratesin,alsocalled“shortrates”?Assumethattheinvestmenthorizonisoneyear,andinvestorsareriskneutral.Example2:Considertwoinvestmentalternatives:(A)buy1-yearzero-couponbond(safe,norisk).(B)buy2-yearzero-couponbondandsellitattheendof1styear(risky,subjecttopriceriskattheendof1styear.)842 ? 1000
926 1000
(A)
(B)
i2=?
ForecastofFutureInterestCanPureExpectationHypothesisExpectedreturnof(A)Expectedreturnof(B)Assumethatinvestorsarerisk-neutral.Thesetwoexpectedreturnsshouldbethesame(donotworryaboutdifferentrisksinvolvedin(A)and(B)): andweknowSo ,henceTheforwardratesaremarketexpectationsoffutureshort-terminterestrates.ThisiscalledthePureExpectationsHypothesis: …….……...…….……..(3.4)PureExpectationHypothesisExpLiquidityPreferenceHypothesis
AssumeinvestorsareRiskaverse.Stillwithone-yearinvestmenthorizon(preferencefor“l(fā)iquidity”).Since(B)isriskier,(B)shouldhavehigherexpectedreturntoattractinvestors:.Hence.TheLiquidityPreference
Hypothesis: +riskpremium=f2.
Ingeneral,fn-riskpremium=.…….……..(3.5)
LiquidityPreferenceHypothesi3.3AlternativeInvestmentRulesHowlongdoesittaketheprojectto“payback”itsinitialinvestment?PaybackPeriod=numberofyearstorecoverinitialcostsMinimumAcceptanceCriteria:setbymanagementRankingCriteria:setbymanagement(1)ThePaybackPeriodRule3.3AlternativeInvestmentRul(1)ThePaybackPeriodRule(continued)Disadvantages:IgnoresthetimevalueofmoneyIgnorescashflowsafterthepaybackperiodBiasedagainstlong-termprojectsRequiresanarbitraryacceptancecriteriaAprojectacceptedbasedonthepaybackcriteriamaynothaveapositiveNPVAdvantages:EasytounderstandBiasedtowardliquidity(1)ThePaybackPeriodRule(cTheDiscountedPaybackPeriodRuleHowlongdoesittaketheprojectto“payback”itsinitialinvestmenttakingthetimevalueofmoneyintoaccount?Bythetimeyouhavediscountedthecashflows,youmightaswellcalculatetheNPV.TheDiscountedPaybackPeriod(2)TheAverageAccountingReturnRuleAnotherattractivebutfatallyflawedapproach.RankingCriteriaandMinimumAcceptanceCriteriasetbymanagementDisadvantages:IgnoresthetimevalueofmoneyUsesanarbitrarybenchmarkcutoffrateBasedonbookvalues,notcashflowsandmarketvaluesAdvantages:TheaccountinginformationisusuallyavailableEasytocalculate(2)TheAverageAccountingRet(3)TheInternalRateofReturn(IRR)RuleIRR:thediscountthatsetsNPVtozeroMinimumAcceptanceCriteria:AcceptiftheIRRexceedstherequiredreturn.RankingCriteria:SelectalternativewiththehighestIRRReinvestmentassumption:AllfuturecashflowsassumedreinvestedattheIRR.Disadvantages:Doesnotdistinguishbetweeninvestingandborrowing.IRRmaynotexistortheremaybemultipleIRRProblemswithmutuallyexclusiveinvestmentsAdvantages:Easytounderstandandcommunicate(3)TheInternalRateofRetu(3)TheInternalRateofReturn:ExampleExample3Considerthefollowingproject:0123$50$100$150-$200Theinternalrateofreturnforthisprojectis19.44%(3)TheInternalRateofReturTheNPVPayoffProfileforThisExampleIfwegraphNPVversusdiscountrate,wecanseetheIRRasthex-axisintercept.IRR=19.44%TheNPVPayoffProfileforThiProblemswiththeIRRApproachMultipleIRRs.AreWeBorrowingorLending?TheScaleProblem.TheTimingProblem.ProblemswiththeIRRApproachMultipleIRRsExample4:TherearetwoIRRsforthisproject:0 1 2 3$200 $800-$200-$800100%=IRR20%=IRR1Whichoneshouldweuse?MultipleIRRsExample4:ThereTheScaleProblemWouldyourathermake100%or50%onyourinvestments?Whatifthe100%returnisona$1investmentwhilethe50%returnisona$1,000investment?TheScaleProblemWouldyouratTheTimingProblem0 1 2 3$10,000$1,000 $1,000-$10,000ProjectA0 1 2 3$1,000 $1,000 $12,000-$10,000ProjectBThepreferredprojectinthiscasedependsonthediscountrate,nottheIRR.Example5:TheTimingProblem0 1 TheTimingProblem10.55%=crossoverrate12.94%=IRRB16.04%=IRRAExample5:TheTimingProblem10.55%=croCalculatingtheCrossoverRateComputetheIRRforeitherproject“A-B”or“B-A”10.55%=IRRExample5:CalculatingtheCrossoverRateMutuallyExclusivevs.IndependentProjectMutuallyExclusiveProjects:onlyONEofseveralpotentialprojectscanbechosen,e.g.acquiringanaccountingsystem.RANKallalternativesandselectthebestone.IndependentProjects:acceptingorrejectingoneprojectdoesnotaffectthedecisionoftheotherprojects.MustexceedaMINIMUMacceptancecriteria.MutuallyExclusivevs.Indepen(4)TheProfitabilityIndex(PI)RuleMinimumAcceptanceCriteria:AcceptifPI>1RankingCriteria:SelectalternativewithhighestPIDisadvantages:ProblemswithmutuallyexclusiveinvestmentsAdvantages:MaybeusefulwhenavailableinvestmentfundsarelimitedEasytounderstandandcommunicateCorrectdecisionwhenevaluatingindependentprojects(4)TheProfitabilityIndex(P3.4WhyUseNetPresentValue?AcceptingpositiveNPVprojectsbenefitsshareholders.NPVusescashflowsNPVusesallthecashflowsoftheprojectNPVdiscountsthecashflowsproperly3.4WhyUseNetPresentValue?TheNetPresentValue(NPV)RuleNetPresentValue(NPV)=TotalPVoffutureCF’s+InitialInvestmentEstimatingNPV:1.Estimatefuturecashflows:howmuch?andwhen?2.Estimatediscountrate3.EstimateinitialcostsMinimumAcceptanceCriteria:AcceptifNPV>0RankingCriteria:ChoosethehighestNPVTheNetPresentValue(NPV)RuGoodAttributesoftheNPVRule1.Usescashflows2.UsesALLcashflowsoftheproject3.DiscountsALLcashflowsproperlyReinvestmentassumption:theNPVruleassumesthatallcashflowscanbereinvestedatthediscountrate.GoodAttributesoftheNPVRulThePracticeofCapitalBudgetingVariesbyindustry:Somefirmsusepayback,othersuseaccountingrateofreturn.ThemostfrequentlyusedtechniqueforlargecorporationsisIRRorNPV.ThePracticeofCapitalBudgetBondMarketandAlternativeInvestmentRules3.1ValuationofBonds3.2TheTermStructureofInterestRates3.3AlternativeInvestmentRules (1)ThePaybackPeriodRule (2)TheAverageAccountingReturn (3)TheInternalRateofReturn (4)TheProfitabilityIndex3.4WhyUseNetPresentValue?(RWJCh.5,6)BondMarketandAlternativeIn3.1ValuationofBondsExample1:Supposeweobservethefollowingbondpricesfordefault-freezerocouponbonds(purediscountbond,withfacevalue$1,000):Howarethebondpricesrelatedwithinterestrates?1yearzero:Price=9262yearzero:Price=8423yearzero:Price=7584yearzero:Price=6831yearbond2yearbond3yearbond4yearbondy1y2y3y4i1i2?i4?i3?(maturitydate)3.1ValuationofBondsExampleThePresentValueFormulasforBondsPureDiscountBondsLevelCouponBondsConsolsforT-maturitybondswithfacevalueF.Sucharateyisknownastheyieldtomaturity(YTM).Theyieldtomaturityisacomplicatedaverageofdifferentratesofinterest.Itcanbeausefulsummarymeasure.
‥‥‥‥‥‥‥‥‥‥(3.1)‥‥(3.2)‥‥‥‥‥‥‥‥‥‥‥‥(3.3)ThePresentValueFormulasforYieldtoMaturityExample1.(continued):wecanconvertbondpricesinto“yieldtomaturity”() hence,
yn=yieldofbondswithnperiodsastimetomaturity,alsocalled“spotrates.”Plotynagainsttimetomaturity(n)”yieldcurve”tosummarizeinformationaboutbondprices(diagram1).
YieldtoMaturityExample1.(co3.2TheTermStructureofInterestRatesFrombondprices,wecancomputeyields,plotthe“yieldcurve”,andcomputetheimpliedforwardrates,.implied“forwardrates”yieldcurveor“spotrates”3.2TheTermStructureofInteForwardRatesisthe“break-even”interestratethatequatesthereturnsonan-periodbondtothatofa(n–1)periodbondrolledoverintoaone-yearbondinyearn.
Forexample,,(geometricmean)or,so asanapproximation(arithmeticmean).Similarly,ForwardRatesisthe“breForecastofFutureInterestCanweuseforwardratesfntoforecastfutureshort-terminterestratesin,alsocalled“shortrates”?Assumethattheinvestmenthorizonisoneyear,andinvestorsareriskneutral.Example2:Considertwoinvestmentalternatives:(A)buy1-yearzero-couponbond(safe,norisk).(B)buy2-yearzero-couponbondandsellitattheendof1styear(risky,subjecttopriceriskattheendof1styear.)842 ? 1000
926 1000
(A)
(B)
i2=?
ForecastofFutureInterestCanPureExpectationHypothesisExpectedreturnof(A)Expectedreturnof(B)Assumethatinvestorsarerisk-neutral.Thesetwoexpectedreturnsshouldbethesame(donotworryaboutdifferentrisksinvolvedin(A)and(B)): andweknowSo ,henceTheforwardratesaremarketexpectationsoffutureshort-terminterestrates.ThisiscalledthePureExpectationsHypothesis: …….……...…….……..(3.4)PureExpectationHypothesisExpLiquidityPreferenceHypothesis
AssumeinvestorsareRiskaverse.Stillwithone-yearinvestmenthorizon(preferencefor“l(fā)iquidity”).Since(B)isriskier,(B)shouldhavehigherexpectedreturntoattractinvestors:.Hence.TheLiquidityPreference
Hypothesis: +riskpremium=f2.
Ingeneral,fn-riskpremium=.…….……..(3.5)
LiquidityPreferenceHypothesi3.3AlternativeInvestmentRulesHowlongdoesittaketheprojectto“payback”itsinitialinvestment?PaybackPeriod=numberofyearstorecoverinitialcostsMinimumAcceptanceCriteria:setbymanagementRankingCriteria:setbymanagement(1)ThePaybackPeriodRule3.3AlternativeInvestmentRul(1)ThePaybackPeriodRule(continued)Disadvantages:IgnoresthetimevalueofmoneyIgnorescashflowsafterthepaybackperiodBiasedagainstlong-termprojectsRequiresanarbitraryacceptancecriteriaAprojectacceptedbasedonthepaybackcriteriamaynothaveapositiveNPVAdvantages:EasytounderstandBiasedtowardliquidity(1)ThePaybackPeriodRule(cTheDiscountedPaybackPeriodRuleHowlongdoesittaketheprojectto“payback”itsinitialinvestmenttakingthetimevalueofmoneyintoaccount?Bythetimeyouhavediscountedthecashflows,youmightaswellcalculatetheNPV.TheDiscountedPaybackPeriod(2)TheAverageAccountingReturnRuleAnotherattractivebutfatallyflawedapproach.RankingCriteriaandMinimumAcceptanceCriteriasetbymanagementDisadvantages:IgnoresthetimevalueofmoneyUsesanarbitrarybenchmarkcutoffrateBasedonbookvalues,notcashflowsandmarketvaluesAdvantages:TheaccountinginformationisusuallyavailableEasytocalculate(2)TheAverageAccountingRet(3)TheInternalRateofReturn(IRR)RuleIRR:thediscountthatsetsNPVtozeroMinimumAcceptanceCriteria:AcceptiftheIRRexceedstherequiredreturn.RankingCriteria:SelectalternativewiththehighestIRRReinvestmentassumption:AllfuturecashflowsassumedreinvestedattheIRR.Disadvantages:Doesnotdistinguishbetweeninvestingandborrowing.IRRmaynotexistortheremaybemultipleIRRProblemswithmutuallyexclusiveinvestmentsAdvantages:Easytounderstandandcommunicate(3)TheInternalRateofRetu(3)TheInternalRateofReturn:ExampleExample3Considerthefollowingproject:0123$50$100$150-$200Theinternalrateofreturnforthisprojectis19.44%(3)TheInternalRateofReturTheNPVPayoffProfileforThisExampleIfwegraphNPVversusdiscountrate,wecanseetheIRRasthex-axisintercept.IRR=19.44%TheNPVPayoffProfileforThiProblemswiththeIRRApproachMultipleIRRs.AreWeBorrowingorLending?TheScaleProblem.TheTimingProblem.ProblemswiththeIRRApproachMultipleIRRsExample4:TherearetwoIRRsforthisproject:0 1 2 3$200 $800-$200-$800100%=IRR20%=IRR1Whichoneshouldweuse?MultipleIRRsExample4:ThereTheScaleProblemWouldyourathermake100%or50%onyourinvestments?Whatifthe100%returnisona$1investmentwhilethe50%returnisona$1,000investment?TheScaleProblemWouldyouratTheTimingProblem0 1 2 3$10,000$1,000 $1,000-$10,000ProjectA0 1 2 3$1,000 $1,000 $12,000-$10,000ProjectBThepreferredprojectinthiscasedependsonthediscountrate,nottheIRR.Example5:TheTimingProblem0 1 TheTimingProblem10.55%=crossoverrate12.94%=IRRB16.04%=IRRAExample5:TheTimingProblem10.55%=croCalculatingtheCrossoverRateComputetheIRRforeitherproject“A-B”or“B-A”10.55%=IRRExample5:CalculatingtheCrossoverRateMutuallyExclusivevs.IndependentProj
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)浴員工合同范本
- 分租門面裝修合同范本
- 企業(yè)招募資金協(xié)議合同范本
- 公司 法律 合同范本
- 公司欠工資合同范本
- 衛(wèi)生清理施工合同范例
- 合伙店轉讓合同范例
- 北京保利拍賣合同范本
- 醫(yī)師執(zhí)業(yè)合同范本
- 農村菜地養(yǎng)殖合同范本
- 煤礦員工安全培訓教材一通三防篇
- 汽車底盤課件 課題7 行駛系統(tǒng)概述
- 表演課程教案完整版
- 2024年新疆區(qū)公務員錄用考試《行測》試題及答案解析
- DB14-T 2736-2023 池塘養(yǎng)殖尾水處理規(guī)范
- 體重管理健康科普教育
- 大學數(shù)學《概率論與數(shù)理統(tǒng)計》說課稿
- 深大基坑設計施工關鍵技術孫加齊
- 《神經外科常見疾病》課件
- DL-T5707-2014電力工程電纜防火封堵施工工藝導則
- 職業(yè)素養(yǎng)提升第2版(大學生職業(yè)素養(yǎng)指導課程)全套教學課件
評論
0/150
提交評論