版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023學年福建省泉州市永春縣重點達標名校中考數(shù)學適應性模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、測試卷卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一元二次方程的根是()A. B.C. D.2.如圖,在△ABC中,AB=AC=5,BC=6,點M為BC的中點,MN⊥AC于點N,則MN等于()A.?
B.?
C.?
D.?3.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚4.一元二次方程的根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷5.一元一次不等式2(1+x)>1+3x的解集在數(shù)軸上表示為()A. B. C. D.6.如圖,在平行四邊形ABCD中,∠ABC的平分線BF交AD于點F,F(xiàn)E∥AB.若AB=5,AD=7,BF=6,則四邊形ABEF的面積為()A.48 B.35 C.30 D.247.納米是一種長度單位,1納米=10-9米,已知某種植物花粉的直徑約為35000納米,那么用科學記數(shù)法表示該種花粉的直徑為()A.米 B.米 C.米 D.米8.如圖,在平面直角坐標系中,已知點B、C的坐標分別為點B(﹣3,1)、C(0,﹣1),若將△ABC繞點C沿順時針方向旋轉(zhuǎn)90°后得到△A1B1C,則點B對應點B1的坐標是()A.(3,1) B.(2,2) C.(1,3) D.(3,0)9.一個布袋內(nèi)只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機摸出一個球后放回攪勻,再隨機摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.10.﹣2018的相反數(shù)是()A.﹣2018 B.2018 C.±2018 D.﹣二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系xOy中,點A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點P順時針旋轉(zhuǎn)30°得到線段PC,連接BC.若點A的坐標為(﹣1,0),則線段BC的長為_____.12.如圖,一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,接著關(guān)閉進水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(單位:升)與時間x(單位:分)之間的部分關(guān)系.那么,從關(guān)閉進水管起分鐘該容器內(nèi)的水恰好放完.13.分解因式:mx2﹣6mx+9m=_____.14.已知a、b滿足a2+b2﹣8a﹣4b+20=0,則a2﹣b2=_____.15.用黑白兩種顏色的正六邊形地面磚按如圖所示的規(guī)律,拼成若干圖案:第4個圖案有白色地面磚______塊;第n個圖案有白色地面磚______塊.16.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=26,CD=24,那么sin∠OCE=▲.17.如圖,在△ABC中,點D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.三、解答題(共7小題,滿分69分)18.(10分)某學校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設(shè)計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)19.(5分)先化簡分式:(-)÷?,再從-3、-3、2、-2中選一個你喜歡的數(shù)作為的值代入求值.20.(8分)綜合與探究:如圖1,拋物線y=﹣x2+x+與x軸分別交于A、B兩點(點A在點B的左側(cè)),與y軸交于C點.經(jīng)過點A的直線l與y軸交于點D(0,﹣).(1)求A、B兩點的坐標及直線l的表達式;(2)如圖2,直線l從圖中的位置出發(fā),以每秒1個單位的速度沿x軸的正方向運動,運動中直線l與x軸交于點E,與y軸交于點F,點A關(guān)于直線l的對稱點為A′,連接FA′、BA′,設(shè)直線l的運動時間為t(t>0)秒.探究下列問題:①請直接寫出A′的坐標(用含字母t的式子表示);②當點A′落在拋物線上時,求直線l的運動時間t的值,判斷此時四邊形A′BEF的形狀,并說明理由;(3)在(2)的條件下,探究:在直線l的運動過程中,坐標平面內(nèi)是否存在點P,使得以P,A′,B,E為頂點的四邊形為矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.21.(10分)如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.22.(10分)某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?23.(12分)在抗洪搶險救災中,某地糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到?jīng)]有受洪水威脅的A,B兩倉庫,已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為60噸,B庫的容量為120噸,從甲、乙兩庫到A、B兩庫的路程和運費如表(表中“元/噸?千米”表示每噸糧食運送1千米所需人民幣)路程(千米)運費(元/噸?千米)甲庫乙?guī)旒讕煲規(guī)霢庫20151212B庫2520108若從甲庫運往A庫糧食x噸,(1)填空(用含x的代數(shù)式表示):①從甲庫運往B庫糧食噸;②從乙?guī)爝\往A庫糧食噸;③從乙?guī)爝\往B庫糧食噸;(2)寫出將甲、乙兩庫糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關(guān)系式,并求出當從甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?24.(14分)如圖,在的矩形方格紙中,每個小正方形的邊長均為,線段的兩個端點均在小正方形的頂點上.在圖中畫出以線段為底邊的等腰,其面積為,點在小正方形的頂點上;在圖中面出以線段為一邊的,其面積為,點和點均在小正方形的頂點上;連接,并直接寫出線段的長.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【答案解析】測試卷分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.2、A【答案解析】
連接AM,根據(jù)等腰三角形三線合一的性質(zhì)得到AM⊥BC,根據(jù)勾股定理求得AM的長,再根據(jù)在直角三角形的面積公式即可求得MN的長.【題目詳解】解:連接AM,
∵AB=AC,點M為BC中點,
∴AM⊥CM(三線合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根據(jù)勾股定理得:AM===4,
又S△AMC=MN?AC=AM?MC,∴MN==.
故選A.【答案點睛】綜合運用等腰三角形的三線合一,勾股定理.特別注意結(jié)論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.3、B【答案解析】測試卷解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.4、A【答案解析】
把a=1,b=-1,c=-1,代入,然后計算,最后根據(jù)計算結(jié)果判斷方程根的情況.【題目詳解】方程有兩個不相等的實數(shù)根.故選A.【答案點睛】本題考查根的判別式,把a=1,b=-1,c=-1,代入計算是解題的突破口.5、B【答案解析】
按照解一元一次不等式的步驟求解即可.【題目詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【答案點睛】數(shù)形結(jié)合思想是初中常用的方法之一.6、D【答案解析】分析:首先證明四邊形ABEF為菱形,根據(jù)勾股定理求出對角線AE的長度,從而得出四邊形的面積.詳解:∵AB∥EF,AF∥BE,∴四邊形ABEF為平行四邊形,∵BF平分∠ABC,∴四邊形ABEF為菱形,連接AE交BF于點O,∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,則四邊形ABEF的面積=6×8÷2=24,故選D.點睛:本題主要考查的是菱形的性質(zhì)以及判定定理,屬于中等難度的題型.解決本題的關(guān)鍵就是根據(jù)題意得出四邊形為菱形.7、C【答案解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】35000納米=35000×10-9米=3.5×10-5米.故選C.【答案點睛】此題主要考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.8、B【答案解析】
作出點A、B繞點C按順時針方向旋轉(zhuǎn)90°后得到的對應點,再順次連接可得△A1B1C,即可得到點B對應點B1的坐標.【題目詳解】解:如圖所示,△A1B1C即為旋轉(zhuǎn)后的三角形,點B對應點B1的坐標為(2,2).故選:B.【答案點睛】此題主要考查了平移變換和旋轉(zhuǎn)變換,正確根據(jù)題意得出對應點位置是解題關(guān)鍵.圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.9、D【答案解析】測試卷分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,隨機摸出一個球后放回攪勻,再隨機摸出一個球所以的結(jié)果有9種,兩次摸出的球都是黑球的結(jié)果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.10、B【答案解析】分析:只有符號不同的兩個數(shù)叫做互為相反數(shù).詳解:-1的相反數(shù)是1.故選:B.點睛:本題主要考查的是相反數(shù)的定義,掌握相反數(shù)的定義是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、22【答案解析】
只要證明△PBC是等腰直角三角形即可解決問題.【題目詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【答案點睛】本題考查翻折變換、坐標與圖形的變化、等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是證明△PBC是等腰直角三角形.12、8?!敬鸢附馕觥扛鶕?jù)函數(shù)圖象求出進水管的進水量和出水管的出水量,由工程問題的數(shù)量關(guān)系就可以求出結(jié)論:由函數(shù)圖象得:進水管每分鐘的進水量為:20÷4=5升。設(shè)出水管每分鐘的出水量為a升,由函數(shù)圖象,得,解得:。∴關(guān)閉進水管后出水管放完水的時間為:(分鐘)。13、m(x﹣3)1.【答案解析】
先把m提出來,然后對括號里面的多項式用公式法分解即可。【題目詳解】m=m(=m【答案點睛】解題的關(guān)鍵是熟練掌握因式分解的方法。14、1【答案解析】
利用配方法把原式化為平方和的形式,根據(jù)偶次方的非負性求出a、b,計算即可.【題目詳解】a2+b2﹣8a﹣4b+20=0,a2﹣8a+16+b2﹣4b+4=0,(a﹣4)2+(b﹣2)2=0a﹣4=0,b﹣2=0,a=4,b=2,則a2﹣b2=16﹣4=1,故答案為1.【答案點睛】本題考查了配方法的應用、非負數(shù)的性質(zhì),掌握完全平方公式、偶次方的非負性是解題的關(guān)鍵.15、18塊(4n+2)塊.【答案解析】
由已知圖形可以發(fā)現(xiàn):前三個圖形中白色地磚的塊數(shù)分別為:6,10,14,所以可以發(fā)現(xiàn)每一個圖形都比它前一個圖形多4個白色地磚,所以可以得到第n個圖案有白色地面磚(4n+2)塊.【題目詳解】解:第1個圖有白色塊4+2,第2圖有4×2+2,第3個圖有4×3+2,所以第4個圖應該有4×4+2=18塊,第n個圖應該有(4n+2)塊.【答案點睛】此題考查了平面圖形,主要培養(yǎng)學生的觀察能力和空間想象能力.16、【答案解析】垂徑定理,勾股定理,銳角三角函數(shù)的定義?!痉治觥咳鐖D,設(shè)AB與CD相交于點E,則根據(jù)直徑AB=26,得出半徑OC=13;由CD=24,CD⊥AB,根據(jù)垂徑定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根據(jù)正弦函數(shù)的定義,求出sin∠OCE的度數(shù):。17、1【答案解析】
先由DE∥BC,可證得△ADE∽△ABC,進而可根據(jù)相似三角形得到的比例線段求得BC的長.【題目詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【答案點睛】考查了相似三角形的性質(zhì)和判定,關(guān)鍵是求出相似后得出比例式,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.三、解答題(共7小題,滿分69分)18、不滿足安全要求,理由見解析.【答案解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設(shè)計方案不滿足安全要求”.【題目詳解】解:施工方提供的設(shè)計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設(shè)計方案不滿足安全要求.19、;5【答案解析】
原式=(-)?=?=?=a=2,原式=520、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF為菱形,見解析;(3)存在,P點坐標為(,)或(,﹣).【答案解析】
(1)通過解方程﹣x2+x+=0得A(?1,0),B(3,0),然后利用待定系數(shù)法確定直線l的解析式;(2)①作A′H⊥x軸于H,如圖2,利用OA=1,OD=得到∠OAD=60°,再利用平移和對稱的性質(zhì)得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根據(jù)含30度的直角三角形三邊的關(guān)系表示出A′H,EH即可得到A′的坐標;②把A′(t?1,t)代入y=?x2+x+得?(t?1)2+(t?1)+=t,解方程得到t=2,此時A′點的坐標為(2,),E(1,0),然后通過計算得到AF=BE=2,A′F∥BE,從而判斷四邊形A′BEF為平行四邊形,然后加上EF=BE可判定四邊形A′BEF為菱形;(3)討論:當A′B⊥BE時,四邊形A′BEP為矩形,利用點A′和點B的橫坐標相同得到t?1=3,解方程求出t得到A′(3,),再利用矩形的性質(zhì)可寫出對應的P點坐標;當A′B⊥EA′,如圖4,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,先確定此時A′點的坐標,然后利用點的平移確定對應P點坐標.【題目詳解】(1)當y=0時,﹣x2+x+=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0),設(shè)直線l的解析式為y=kx+b,把A(﹣1,0),D(0,﹣)代入得,解得,∴直線l的解析式為y=﹣x﹣;(2)①作A′H⊥x軸于H,如圖,∵OA=1,OD=,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵點A關(guān)于直線l的對稱點為A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=EA′=t,A′H=EH=t,∴OH=OE+EH=t﹣1+t=t﹣1,∴A′(t﹣1,t);②把A′(t﹣1,t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,解得t1=0(舍去),t2=2,∴當點A′落在拋物線上時,直線l的運動時間t的值為2;此時四邊形A′BEF為菱形,理由如下:當t=2時,A′點的坐標為(2,),E(1,0),∵∠OEF=60°∴OF=OE=,EF=2OE=2,∴F(0,),∴A′F∥x軸,∵A′F=BE=2,A′F∥BE,∴四邊形A′BEF為平行四邊形,而EF=BE=2,∴四邊形A′BEF為菱形;(3)存在,如圖:當A′B⊥BE時,四邊形A′BEP為矩形,則t﹣1=3,解得t=,則A′(3,),∵OE=t﹣1=,∴此時P點坐標為(,);當A′B⊥EA′,如圖,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴BQ=A′Q=?t=t,∴t﹣1+t=3,解得t=,此時A′(1,),E(,0),點A′向左平移個單位,向下平移個單位得到點E,則點B(3,0)向左平移個單位,向下平移個單位得到點P,則P(,﹣),綜上所述,滿足條件的P點坐標為(,)或(,﹣).【答案點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、菱形的判定和矩形的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質(zhì).21、證明見解析.【答案解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【題目詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉(zhuǎn)而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.22、(1)0≤x<20;(2)降價2.5元時,最大利潤是6125元【答案解析】
(1)根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由“確保盈利”可得x的取值范圍.
(2)將所得函數(shù)解析式配方成頂點式可得最大值.【題目詳解】(1)根據(jù)題意得y=(70?x?50)(300+20x)=?20x2+100x+6000,∵70?x?50>0,且x≥0,∴0≤x<20.(2)∵y=?20x2+100x+6000=?20(x?)2+6125,∴當x=時,y取得最大值,最大值為6125,答:當降價2.5元時,每星期的利潤最大,最大利潤是6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高中語文第二單元置身詩境緣景明情夢游天姥吟留別訓練含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考地理一輪復習第十三單元人類與地理環(huán)境的協(xié)調(diào)發(fā)展練習含解析
- 2024高考歷史一輪復習方案專題十三近現(xiàn)代中國的先進思想專題綜合測驗含解析人民版
- 2024高考地理一輪復習第一部分自然地理-重在理解第四章地表形態(tài)的塑造第12講營造地表形態(tài)的力量學案新人教版
- DB42-T 2329-2024 固定污染源氣態(tài)汞采樣裝置技術(shù)要求與檢測方法
- 烤漆房緊急預案
- 二零二五年度糧油產(chǎn)品進出口代理合同3篇
- 二零二五年綠色建材認證瓷磚供應商合作協(xié)議3篇
- 鎂合金成型與應用教學教案
- 北師大版數(shù)學八年級上冊《平面直角坐標系中三角形面積問題》
- 布氏桿菌脊柱炎的護理
- 教育培訓行業(yè)跨學科教育發(fā)展
- 智能充電樁的管理與優(yōu)化調(diào)度
- 最全全國各省市縣名稱
- 學校新媒體管理制度規(guī)章
- 校本課程生活中的化學
- 小麥冬季管理技術(shù)意見
- 三年級數(shù)學上冊學業(yè)質(zhì)量評價方案
- 財商培訓課件
- 自我驅(qū)動能力培養(yǎng)與提升的方法和技巧
- 放療科護理病區(qū)利用PDCA循環(huán)降低放療患者放射性皮膚損傷的發(fā)生率品管圈QCC成果匯報
評論
0/150
提交評論