浙江省寧波市鎮(zhèn)海區(qū)2022年中考數(shù)學模擬預(yù)測試卷含解析_第1頁
浙江省寧波市鎮(zhèn)海區(qū)2022年中考數(shù)學模擬預(yù)測試卷含解析_第2頁
浙江省寧波市鎮(zhèn)海區(qū)2022年中考數(shù)學模擬預(yù)測試卷含解析_第3頁
浙江省寧波市鎮(zhèn)海區(qū)2022年中考數(shù)學模擬預(yù)測試卷含解析_第4頁
浙江省寧波市鎮(zhèn)海區(qū)2022年中考數(shù)學模擬預(yù)測試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米2.如圖是小明在物理實驗課上用量筒和水測量鐵塊A的體積實驗,小明在勻速向上將鐵塊提起,直至鐵塊完全露出水面一定高度的過程中,則下圖能反映液面高度h與鐵塊被提起的時間t之間的函數(shù)關(guān)系的大致圖象是()A. B. C. D.3.下列安全標志圖中,是中心對稱圖形的是()A. B. C. D.4.春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關(guān)系,在打開門窗通風前分別滿足兩個一次函數(shù),在通風后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時間達到了C.當室內(nèi)空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當室內(nèi)空氣中的含藥量低于時,對人體才是安全的,所以從室內(nèi)空氣中的含藥量達到開始,需經(jīng)過后,學生才能進入室內(nèi)5.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.6.下列二次根式中,最簡二次根式是()A. B. C. D.7.如圖的幾何體是由一個正方體切去一個小正方體形成的,它的主視圖是()A. B. C. D.8.如圖,矩形紙片中,,,將沿折疊,使點落在點處,交于點,則的長等于()A. B. C. D.9.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為()A.8 B.8 C.4 D.610.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:.12.在△ABC中,∠BAC=45°,∠ACB=75°,分別以A、C為圓心,以大于AC的長為半徑畫弧,兩弧交于F、G作直線FG,分別交AB,AC于點D、E,若AC的長為4,則BC的長為_____.13.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對角線AC與BD相交于點O,點E在AC上,若OE=2,則CE的長為_______14.計算:(1)()2=_____;(2)=_____.15.如圖,一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,與x軸交與點C,若tan∠AOC=,則k的值為_____.16.一個多項式與的積為,那么這個多項式為.三、解答題(共8題,共72分)17.(8分)如圖,在中,,,點D是BC上任意一點,將線段AD繞點A逆時針方向旋轉(zhuǎn),得到線段AE,連結(jié)EC.依題意補全圖形;求的度數(shù);若,,將射線DA繞點D順時針旋轉(zhuǎn)交EC的延長線于點F,請寫出求AF長的思路.18.(8分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)19.(8分)武漢二中廣雅中學為了進一步改進本校九年級數(shù)學教學,提高學生學習數(shù)學的興趣.校教務(wù)處在九年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調(diào)查:我們從所調(diào)查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:“非常喜歡”、“比較喜歡”、“不太喜歡”、“很不喜歡”,針對這個題目,問卷時要求每位被調(diào)查的學生必須從中選一項且只能選一項)結(jié)果進行了統(tǒng)計.現(xiàn)將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)以上提供的信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是,圖②中所在扇形對應(yīng)的圓心角是;(3)若該校九年級共有960名學生,請你估算該年級學生中對數(shù)學學習“不太喜歡”的有多少人?20.(8分)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣21.(8分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.22.(10分)化簡分式,并從0、1、2、3這四個數(shù)中取一個合適的數(shù)作為x的值代入求值.23.(12分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應(yīng)邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應(yīng)邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.當β=45°時,若△APQ是“中邊三角形”,試求的值.24.4月9日上午8時,2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個孩子一同參加了比賽,下面是兩個孩子與記者的對話:根據(jù)對話內(nèi)容,請你用方程的知識幫記者求出哥哥和妹妹的年齡.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設(shè)BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.2、B【解析】根據(jù)題意,在實驗中有3個階段,①、鐵塊在液面以下,液面得高度不變;②、鐵塊的一部分露出液面,但未完全露出時,液面高度降低;③、鐵塊在液面以上,完全露出時,液面高度又維持不變;分析可得,B符合描述;故選B.3、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.4、C【解析】

利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時間達到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.【點睛】本題考查反比例函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是讀懂圖象信息,屬于中考??碱}型.5、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.6、C【解析】

檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.7、D【解析】試題分析:根據(jù)三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個正方形.8、B【解析】

由折疊的性質(zhì)得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結(jié)論EF=DF;易得FC=FA,設(shè)FA=x,則FC=x,F(xiàn)D=6-x,在Rt△CDF中利用勾股定理得到關(guān)于x的方程x2=42+(6-x)2,解方程求出x即可.【詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,

∴AE=AB,∠E=∠B=90°,

又∵四邊形ABCD為矩形,

∴AB=CD,

∴AE=DC,

而∠AFE=∠DFC,

∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),

∴EF=DF;

∵四邊形ABCD為矩形,

∴AD=BC=6,CD=AB=4,

∵Rt△AEF≌Rt△CDF,

∴FC=FA,

設(shè)FA=x,則FC=x,F(xiàn)D=6-x,

在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【點睛】考查了折疊的性質(zhì):折疊前后兩圖形全等,即對應(yīng)角相等,對應(yīng)邊相等.也考查了矩形的性質(zhì)和三角形全等的判定與性質(zhì)以及勾股定理.9、D【解析】分析:連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.10、C【解析】

由正方形的性質(zhì)知DG=CG-CD=2、AD∥GF,據(jù)此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,

∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,

∴DG=CG-CD=2,AD∥GF,

則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練掌握正方形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.考點:提公因式法和應(yīng)用公式法因式分解.12、【解析】

連接CD在根據(jù)垂直平分線的性質(zhì)可得到△ADC為等腰直角三角形,結(jié)合已知的即可得到∠BCD的大小,然后就可以解答出此題【詳解】解:連接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案為.【點睛】此題主要考查垂直平分線的性質(zhì),解題關(guān)鍵在于連接CD利用垂直平分線的性質(zhì)證明△ADC為等腰直角三角形13、5或【解析】分析:由菱形的性質(zhì)證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點E在AC上,∴當E在點O左邊時當點E在點O右邊時∴或;故答案為或.點睛:考查菱形的性質(zhì),注意分類討論思想在數(shù)學中的應(yīng)用,不要漏解.14、【解析】

(1)直接利用分式乘方運算法則計算得出答案;(2)直接利用分式除法運算法則計算得出答案.【詳解】(1)()2=;故答案為;(2)==.故答案為.【點睛】此題主要考查了分式的乘除法運算,正確掌握運算法則是解題關(guān)鍵.15、1【解析】【分析】如圖,過點A作AD⊥x軸,垂足為D,根據(jù)題意設(shè)出點A的坐標,然后根據(jù)一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,可以求得a的值,進而求得k的值即可.【詳解】如圖,過點A作AD⊥x軸,垂足為D,∵tan∠AOC==,∴設(shè)點A的坐標為(1a,a),∵一次函數(shù)y=x﹣2的圖象與反比例函數(shù)y=(k>0)的圖象相交于A、B兩點,∴a=1a﹣2,得a=1,∴1=,得k=1,故答案為:1.【點睛】本題考查了正切,反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.16、【解析】試題分析:依題意知=考點:整式運算點評:本題難度較低,主要考查學生對整式運算中多項式計算知識點的掌握。同底數(shù)冪相乘除,指數(shù)相加減。三、解答題(共8題,共72分)17、(1)見解析;(2)90°;(3)解題思路見解析.【解析】

(1)將線段AD繞點A逆時針方向旋轉(zhuǎn)90°,得到線段AE,連結(jié)EC.(2)先判定△ABD≌△ACE,即可得到,再根據(jù),即可得出;(3)連接DE,由于△ADE為等腰直角三角形,所以可求;由,,可求的度數(shù)和的度數(shù),從而可知DF的長;過點A作于點H,在Rt△ADH中,由,AD=1可求AH、DH的長;由DF、DH的長可求HF的長;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的長.【詳解】解:如圖,線段AD繞點A逆時針方向旋轉(zhuǎn),得到線段AE.,,.,.,在和中,≌.,中,,,.;Ⅰ連接DE,由于為等腰直角三角形,所以可求;Ⅱ由,,可求的度數(shù)和的度數(shù),從而可知DF的長;Ⅲ過點A作于點H,在中,由,可求AH、DH的長;Ⅳ由DF、DH的長可求HF的長;Ⅴ在中,由AH和HF,利用勾股定理可求AF的長.故答案為(1)見解析;(2)90°;(3)解題思路見解析.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì)的運用,解題的關(guān)鍵是要注意對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.18、(1)證明見解析;(2);【解析】

(1)連接OD,先根據(jù)切線的性質(zhì)得到∠CDO=90°,再根據(jù)平行線的性質(zhì)得到∠AOC=∠OBD,∠COD=∠ODB,又因為OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根據(jù)全等三角形的判定與性質(zhì)得到∠CAO=∠CDO=90°,根據(jù)切線的判定即可得證;(2)因為AB=OC=4,OB=OD,Rt△ODC與Rt△OAC是含30°的直角三角形,從而得到∠DOB=60°,即△BOD為等邊三角形,再用扇形的面積減去△BOD的面積即可.【詳解】(1)證明:連接OD,∵CD與圓O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,則AC與圓O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC與Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD為等邊三角形,圖中陰影部分的面積=扇形DOB的面積﹣△DOB的面積,=.【點睛】本題主要考查切線的判定與性質(zhì),全等三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì),扇形的面積公式等,難度中等,屬于綜合題,解此題的關(guān)鍵在于熟練掌握其知識點.19、(1)答案見解析;(2)B,54°;(3)240人.【解析】

(1)根據(jù)D程度的人數(shù)和所占抽查總?cè)藬?shù)的百分率即可求出抽查總?cè)藬?shù),然后利用總?cè)藬?shù)減去A、B、D程度的人數(shù)即可求出C程度的人數(shù),然后分別計算出各程度人數(shù)占抽查總?cè)藬?shù)的百分率,從而補全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義即可得出結(jié)論,然后利用360°乘A程度的人數(shù)所占抽查總?cè)藬?shù)的百分率即可得出結(jié)論;(3)利用960乘C程度的人數(shù)所占抽查總?cè)藬?shù)的百分率即可.【詳解】解:(1)被調(diào)查的學生總?cè)藬?shù)為人,C程度的人數(shù)為人,則的百分比為、的百分比為、的百分比為,補全圖形如下:(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是、圖②中所在扇形對應(yīng)的圓心角是.故答案為:;;(3)該年級學生中對數(shù)學學習“不太喜歡”的有人答:該年級學生中對數(shù)學學習“不太喜歡”的有240人.【點睛】此題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖,結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖得出有用信息是解決此題的關(guān)鍵.20、【解析】

原式去括號合并得到最簡結(jié)果,把a與b的值代入計算即可求出值;【詳解】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,當a=1、b=﹣時,原式=12+(﹣)2=1+=.【點睛】考查了整式的加減-化簡求值,以及非負數(shù)的性質(zhì),熟練掌握運算法則是解本題的關(guān)鍵.21、(1)證明見解析;(2);(3)1.【解析】

(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質(zhì)判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線的判定定理得到AE為⊙O的切線;(2)設(shè)⊙O的半徑為r,利用等腰三角形的性質(zhì)得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關(guān)于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據(jù)垂徑定理得到BH=HG=,所以BG=1.【詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線,∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線;(2)解:設(shè)⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設(shè)⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.22、x取0時,為1或x取1時,為2【解析】試題分析:利用分式的運算,先對分式化簡單,再選擇使分式有意義的數(shù)代入求值即可.試題解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,當x=0時,原式=1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論