版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.一元二次方程的根是()A. B.C. D.2.如圖,在平面直角坐標(biāo)系xOy中,菱形AOBC的一個頂點(diǎn)O在坐標(biāo)原點(diǎn),一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于()A.30 B.40 C.60 D.803.甲、乙兩位同學(xué)做中國結(jié),已知甲每小時比乙少做6個,甲做30個所用的時間與乙做45個所用的時間相等,求甲每小時做中國結(jié)的個數(shù).如果設(shè)甲每小時做x個,那么可列方程為()A.= B.=C.= D.=4.如圖,有一些點(diǎn)組成形如四邊形的圖案,每條“邊”(包括頂點(diǎn))有n(n>1)個點(diǎn).當(dāng)n=2018時,這個圖形總的點(diǎn)數(shù)S為()A.8064 B.8067 C.8068 D.80725.如圖,將邊長為8㎝的正方形ABCD折疊,使點(diǎn)D落在BC邊的中點(diǎn)E處,點(diǎn)A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm6.如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)M是AB的中點(diǎn),若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.107.已知點(diǎn)M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)8.實(shí)數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.9.計(jì)算6m3÷(-3m2)的結(jié)果是()A.-3m B.-2m C.2m D.3m10.兩個同心圓中大圓的弦AB與小圓相切于點(diǎn)C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.16二、填空題(本大題共6個小題,每小題3分,共18分)11.設(shè)、是一元二次方程的兩實(shí)數(shù)根,則的值為.12.如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動,點(diǎn)E與點(diǎn)D關(guān)于AC對稱,DF⊥DE于點(diǎn)D,并交EC的延長線于點(diǎn)F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當(dāng)AD=2時,EF與半圓相切;④若點(diǎn)F恰好落在BC上,則AD=;⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動到點(diǎn)B時,線段EF掃過的面積是.其中正確結(jié)論的序號是.13.?dāng)?shù)學(xué)綜合實(shí)踐課,老師要求同學(xué)們利用直徑為的圓形紙片剪出一個如圖所示的展開圖,再將它沿虛線折疊成一個無蓋的正方體形盒子(接縫處忽略不計(jì)).若要求折出的盒子體積最大,則正方體的棱長等于________.14.如圖,AB=AC,AD∥BC,若∠BAC=80°,則∠DAC=__________.15.如圖,點(diǎn)A為函數(shù)y=(x>0)圖象上一點(diǎn),連結(jié)OA,交函數(shù)y=(x>0)的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,則△OBC的面積為____.16.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為C.若PC=2,則BC的長為______.三、解答題(共8題,共72分)17.(8分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(3,0),點(diǎn)B(0,4),把△ABO繞點(diǎn)A順時針旋轉(zhuǎn),得△AB′O′,點(diǎn)B,O旋轉(zhuǎn)后的對應(yīng)點(diǎn)為B′,O.(1)如圖1,當(dāng)旋轉(zhuǎn)角為90°時,求BB′的長;(2)如圖2,當(dāng)旋轉(zhuǎn)角為120°時,求點(diǎn)O′的坐標(biāo);(3)在(2)的條件下,邊OB上的一點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn)為P′,當(dāng)O′P+AP′取得最小值時,求點(diǎn)P′的坐標(biāo).(直接寫出結(jié)果即可)18.(8分)從2017年1月1日起,我國駕駛證考試正式實(shí)施新的駕考培訓(xùn)模式,新規(guī)定C2駕駛證的培訓(xùn)學(xué)時為40學(xué)時,駕校的學(xué)費(fèi)標(biāo)準(zhǔn)分不同時段,普通時段a元/學(xué)時,高峰時段和節(jié)假日時段都為b元/學(xué)時.(1)小明和小華都在此駕校參加C2駕駛證的培訓(xùn),下表是小明和小華的培訓(xùn)結(jié)算表(培訓(xùn)學(xué)時均為40),請你根據(jù)提供的信息,計(jì)算出a,b的值.學(xué)員培訓(xùn)時段培訓(xùn)學(xué)時培訓(xùn)總費(fèi)用小明普通時段206000元高峰時段5節(jié)假日時段15小華普通時段305400元高峰時段2節(jié)假日時段8(2)小陳報(bào)名參加了C2駕駛證的培訓(xùn),并且計(jì)劃學(xué)夠全部基本學(xué)時,但為了不耽誤工作,普通時段的培訓(xùn)學(xué)時不會超過其他兩個時段總學(xué)時的,若小陳普通時段培訓(xùn)了x學(xué)時,培訓(xùn)總費(fèi)用為y元①求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;②小陳如何選擇培訓(xùn)時段,才能使得本次培訓(xùn)的總費(fèi)用最低?19.(8分)反比例函數(shù)y=(k≠0)與一次函數(shù)y=mx+b(m≠0)交于點(diǎn)A(1,2k﹣1).求反比例函數(shù)的解析式;若一次函數(shù)與x軸交于點(diǎn)B,且△AOB的面積為3,求一次函數(shù)的解析式.20.(8分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點(diǎn)M為上一動點(diǎn)(不包括A,B兩點(diǎn)),射線AM與射線EC交于點(diǎn)F.(1)如圖②,當(dāng)F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結(jié)果保留根號).21.(8分)已知關(guān)于的一元二次方程.試證明:無論取何值此方程總有兩個實(shí)數(shù)根;若原方程的兩根,滿足,求的值.22.(10分)如圖,現(xiàn)有一塊鋼板余料,它是矩形缺了一角,.王師傅準(zhǔn)備從這塊余料中裁出一個矩形(為線段上一動點(diǎn)).設(shè),矩形的面積為.(1)求與之間的函數(shù)關(guān)系式,并注明的取值范圍;(2)為何值時,取最大值?最大值是多少?23.(12分)已知圓O的半徑長為2,點(diǎn)A、B、C為圓O上三點(diǎn),弦BC=AO,點(diǎn)D為BC的中點(diǎn),(1)如圖,連接AC、OD,設(shè)∠OAC=α,請用α表示∠AOD;(2)如圖,當(dāng)點(diǎn)B為的中點(diǎn)時,求點(diǎn)A、D之間的距離:(3)如果AD的延長線與圓O交于點(diǎn)E,以O(shè)為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.24.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;求兩次摸到的球的顏色不同的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點(diǎn):一元二次方程的解法——因式分解法——提公因式法.2、B【解析】
過點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過解直角三角形找出點(diǎn)A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點(diǎn)A的坐標(biāo)為(a,a).∵點(diǎn)A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點(diǎn)F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.3、A【解析】
設(shè)甲每小時做x個,乙每小時做(x+6)個,根據(jù)甲做30個所用時間與乙做45個所用時間相等即可列方程.【詳解】設(shè)甲每小時做x個,乙每小時做(x+6)個,根據(jù)甲做30個所用時間與乙做45個所用時間相等可得=.故選A.【點(diǎn)睛】本題考查了分式方程的應(yīng)用,找到關(guān)鍵描述語,正確找出等量關(guān)系是解決問題的關(guān)鍵.4、C【解析】分析:本題重點(diǎn)注意各個頂點(diǎn)同時在兩條邊上,計(jì)算點(diǎn)的個數(shù)時,不要把頂點(diǎn)重復(fù)計(jì)算了.詳解:此題中要計(jì)算點(diǎn)的個數(shù),可以類似周長的計(jì)算方法進(jìn)行,但應(yīng)注意各個頂點(diǎn)重復(fù)了一次.如當(dāng)n=2時,共有S2=4×2﹣4=4;當(dāng)n=3時,共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當(dāng)n=2018時,S2018=4×2018﹣4=1.故選C.點(diǎn)睛:本題考查了圖形的變化類問題,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律.5、A【解析】分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設(shè)CN=x,則DN=NE=8﹣x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.詳解:設(shè)CN=xcm,則DN=(8﹣x)cm,由折疊的性質(zhì)知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點(diǎn)睛:此題主要考查了折疊問題,明確折疊問題其實(shí)質(zhì)是軸對稱,對應(yīng)線段相等,對應(yīng)角相等,通常用勾股定理解決折疊問題.6、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點(diǎn)O,
∴∠BAD=90°,點(diǎn)O是線段BD的中點(diǎn),
∵點(diǎn)M是AB的中點(diǎn),
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【點(diǎn)睛】本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關(guān)鍵.7、A【解析】因?yàn)辄c(diǎn)M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A8、A【解析】
根據(jù)絕對值的性質(zhì)進(jìn)行解答即可.【詳解】實(shí)數(shù)﹣5.1的絕對值是5.1.故選A.【點(diǎn)睛】本題考查的是實(shí)數(shù)的性質(zhì),熟知絕對值的性質(zhì)是解答此題的關(guān)鍵.9、B【解析】
根據(jù)單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式計(jì)算,然后選取答案即可.【詳解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故選B.10、D【解析】試題分析:設(shè)AB于小圓切于點(diǎn)C,連接OC,OB.∵AB于小圓切于點(diǎn)C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點(diǎn):1.垂徑定理的應(yīng)用;2.切線的性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、27【解析】試題分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案為27.點(diǎn)睛:此題主要考查了一元二次方程根與系數(shù)的關(guān)系,解題時靈活運(yùn)用根與系數(shù)的關(guān)系:,,確定系數(shù)a,b,c的值代入求解,然后再通過完全平方式變形解答即可.12、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結(jié)論“CE=CF”正確;②當(dāng)CD⊥AB時,如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點(diǎn)到直線之間,垂線段最短”可得:點(diǎn)D在線段AB上運(yùn)動時,CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結(jié)論“線段EF的最小值為”錯誤;③當(dāng)AD=2時,連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結(jié)論“EF與半圓相切”正確;④當(dāng)點(diǎn)F恰好落在上時,連接FB、AF,如圖4所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結(jié)論“AD=”錯誤;⑤∵點(diǎn)D與點(diǎn)E關(guān)于AC對稱,點(diǎn)D與點(diǎn)F關(guān)于BC對稱,∴當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動到點(diǎn)B時,點(diǎn)E的運(yùn)動路徑AM與AB關(guān)于AC對稱,點(diǎn)F的運(yùn)動路徑NB與AB關(guān)于BC對稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過的面積為,∴結(jié)論“EF掃過的面積為”正確.故答案為①③⑤.考點(diǎn):1.圓的綜合題;2.等邊三角形的判定與性質(zhì);3.切線的判定;4.相似三角形的判定與性質(zhì).13、【解析】
根據(jù)題意作圖,可得AB=6cm,設(shè)正方體的棱長為xcm,則AC=x,BC=3x,根據(jù)勾股定理對稱62=x2+(3x)2,解方程即可求得.【詳解】解:如圖示,根據(jù)題意可得AB=6cm,
設(shè)正方體的棱長為xcm,則AC=x,BC=3x,
根據(jù)勾股定理,AB2=AC2+BC2,即,
解得故答案為:.【點(diǎn)睛】本題考查了勾股定理的應(yīng)用,正確理解題意是解題的關(guān)鍵.14、50°【解析】
根據(jù)等腰三角形頂角度數(shù),可求出每個底角,然后根據(jù)兩直線平行,內(nèi)錯角相等解答.【詳解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案為50°.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)以及平行線性質(zhì)的應(yīng)用,注意:兩直線平行,內(nèi)錯角相等.15、6【解析】
根據(jù)題意可以分別設(shè)出點(diǎn)A、點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)O、A、B在同一條直線上可以得到A、B的坐標(biāo)之間的關(guān)系,由AO=AC可知點(diǎn)C的橫坐標(biāo)是點(diǎn)A的橫坐標(biāo)的2倍,從而可以得到△OBC的面積.【詳解】設(shè)點(diǎn)A的坐標(biāo)為(a,),點(diǎn)B的坐標(biāo)為(b,),∵點(diǎn)C是x軸上一點(diǎn),且AO=AC,∴點(diǎn)C的坐標(biāo)是(2a,0),設(shè)過點(diǎn)O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點(diǎn)B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式.16、2【解析】
連接OC,根據(jù)勾股定理計(jì)算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結(jié)論.【詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【點(diǎn)睛】本題考查切線的性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.三、解答題(共8題,共72分)17、(1)5;(2)O'(,);(3)P'(,).【解析】
(1)先求出AB.利用旋轉(zhuǎn)判斷出△ABB'是等腰直角三角形,即可得出結(jié)論;(2)先判斷出∠HAO'=60°,利用含30度角的直角三角形的性質(zhì)求出AH,OH,即可得出結(jié)論;(3)先確定出直線O'C的解析式,進(jìn)而確定出點(diǎn)P的坐標(biāo),再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋轉(zhuǎn)知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(2)如圖2,過點(diǎn)O'作O'H⊥x軸于H,由旋轉(zhuǎn)知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();(3)由旋轉(zhuǎn)知,AP=AP',∴O'P+AP'=O'P+AP.如圖3,作A關(guān)于y軸的對稱點(diǎn)C,連接O'C交y軸于P,∴O'P+AP=O'P+CP=O'C,此時,O'P+AP的值最?。唿c(diǎn)C與點(diǎn)A關(guān)于y軸對稱,∴C(﹣3,0).∵O'(),∴直線O'C的解析式為y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().【點(diǎn)睛】本題是幾何變換綜合題,考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),含30度角的直角三角形的性質(zhì),構(gòu)造出直角三角形是解答本題的關(guān)鍵.18、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=時,y有最小值,此時y最小=-60×+7200=6400(元).【解析】
(1)根據(jù)小明和小華的培訓(xùn)結(jié)算表列出關(guān)于a、b的二元一次方程組,解方程即可求解;(2)①根據(jù)培訓(xùn)總費(fèi)用=普通時段培訓(xùn)費(fèi)用+高峰時段和節(jié)假日時段培訓(xùn)費(fèi)用列出y與x之間的函數(shù)關(guān)系式,進(jìn)而確定自變量x的取值范圍;②根據(jù)一次函數(shù)的性質(zhì)結(jié)合自變量的取值范圍即可求解.【詳解】(1)由題意,得,解得,故a,b的值分別是120,180;(2)①由題意,得y=120x+180(40-x),化簡得y=-60x+7200,∵普通時段的培訓(xùn)學(xué)時不會超過其他兩個時段總學(xué)時的,∴x≤(40-x),解得x≤,又x≥0,∴0≤x≤;②∵y=-60x+7200,k=-60<0,∴y隨x的增大而減小,∴x取最大值時,y有最小值,∵0≤x≤;∴x=時,y有最小值,此時y最小=-60×+7200=6400(元).【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,二元一次方程組的應(yīng)用,理解題意得出數(shù)量關(guān)系是解題的關(guān)鍵.19、(1)y=;(2)y=﹣或y=【解析】試題分析:(1)把A(1,2k-1)代入y=即可求得結(jié)果;
(2)根據(jù)三角形的面積等于3,求得點(diǎn)B的坐標(biāo),代入一次函數(shù)y=mx+b即可得到結(jié)果.試題解析:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函數(shù)的解析式為:y=;(2)由(1)得k=1,∴A(1,1),設(shè)B(a,0),∴S△AOB=?|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=﹣.所以符合條件的一次函數(shù)解析式為:y=﹣或y=x+.20、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構(gòu)建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設(shè)⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當(dāng)FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當(dāng)MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點(diǎn)睛】本題考查了圓的綜合題:熟練掌握與圓有關(guān)的性質(zhì)、圓的內(nèi)接正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì);靈活利用全等三角形的性質(zhì);會利用面積的和差計(jì)算不規(guī)則幾何圖形的面積.21、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個實(shí)數(shù)根;(2)根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=5、x1x2=6-p2-p,結(jié)合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個實(shí)數(shù)根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點(diǎn)睛:本題考查了根與系數(shù)的關(guān)系以及根的判別式,解題的關(guān)鍵是:(1)牢記“當(dāng)△≥1時,方程有兩個實(shí)數(shù)根”;(2)根據(jù)根與系數(shù)的關(guān)系結(jié)合x12+x22-x1x2=3p2+1,求出p值.22、(1);(1)時,取最大值,為.【解析】
(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,由AF=x知CH=x-4,根據(jù),即可得z=,利用矩形的面積公式即可得出解析式;
(1)將(1)中所得解析式配方成頂點(diǎn)式,利用二次函數(shù)的性質(zhì)解答可得.【詳解】解:(1)分別延長DE,F(xiàn)P,與BC的延長線相交于G,H,
∵AF=x,
∴CH=x-4,
設(shè)AQ=z,PH=BQ=6-z,
∵PH∥EG,
∴,即,
化簡得z=,
∴y=?x=-x1+x(4≤x≤10);
(1)y=-x1+x=-(x-)1+,
當(dāng)x=dm時,y取最大值,最大值是dm1.【點(diǎn)睛】本題考查了二次函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 探索數(shù)據(jù)奧秘:2024年SA20培訓(xùn)教程解析
- 重慶大學(xué)2021年春季學(xué)期課程作業(yè)《鋼結(jié)構(gòu)設(shè)計(jì)》
- 掌握工業(yè)自動化:2024年ABPLC培訓(xùn)教程深度解析
- 2024年《陀螺》課程探討
- 教案點(diǎn)評:2024年三角形分類教學(xué)新思路
- 科目一考試技巧記憶口訣-駕考實(shí)操
- 平安保衛(wèi)工作手冊
- 《六國論》課件的環(huán)保解讀:2024年綠色教育趨勢
- 2024年SEM入門培訓(xùn)教程-走向網(wǎng)絡(luò)營銷巔峰
- 焊接高級技師論文-耐熱鋼壁管的TIG焊接工藝
- 金鏟鏟之戰(zhàn)教程
- 刺梨果汁飲料和刺梨濃縮果汁
- 社交媒體營銷策略研究
- 實(shí)體店培訓(xùn)計(jì)劃書
- 急性心肌梗死小講課
- 廣州市小學(xué)數(shù)學(xué)學(xué)科第二屆青年教師解題比賽初賽試題(答案)
- Unit3ConservationWritingWorkshop課件-高中英語北師大版選擇性
- 大學(xué)數(shù)據(jù)結(jié)構(gòu)期末考試試題(有答案)
- 尿源性膿毒血癥的護(hù)理查房課件
- 跨境數(shù)據(jù)流動與治理
- 轉(zhuǎn)體梁施工方案
評論
0/150
提交評論