




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.在實數(shù),有理數(shù)有()A.1個 B.2個 C.3個 D.4個2.如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結(jié)論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結(jié)論個數(shù)為()A.4 B.3 C.2 D.13.如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是()A.AE=6cm B.C.當(dāng)0<t≤10時, D.當(dāng)t=12s時,△PBQ是等腰三角形4.下列計算正確的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a(chǎn)6÷a2=a35.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤46.y=(m﹣1)x|m|+3m表示一次函數(shù),則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣17.改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升,居民教育、文化和娛樂消費支出持續(xù)增長,已經(jīng)成為居民各項消費支出中僅次于居住、食品煙酒、交通通信后的第四大消費支出,如圖為北京市統(tǒng)計局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費支出的折線圖.說明:在統(tǒng)計學(xué)中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較.根據(jù)上述信息,下列結(jié)論中錯誤的是()A.2017年第二季度環(huán)比有所提高B.2017年第三季度環(huán)比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高8.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.9.2017年,小欖鎮(zhèn)GDP總量約31600000000元,數(shù)據(jù)31600000000科學(xué)記數(shù)法表示為()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×101110.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(
).A. B.- C.- D.二、填空題(本大題共6個小題,每小題3分,共18分)11.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個三角形,用這兩個三角形拼成平行四邊形,則這個平行四邊形較長的對角線的長是______.12.計算:a3÷(﹣a)2=_____.13.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應(yīng),若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.14.如圖,點A、B、C在⊙O上,⊙O半徑為1cm,∠ACB=30°,則的長是________.15.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.16.在如圖所示(A,B,C三個區(qū)域)的圖形中隨機地撒一把豆子,豆子落在區(qū)域的可能性最大(填A(yù)或B或C).三、解答題(共8題,共72分)17.(8分)列方程或方程組解應(yīng)用題:為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?18.(8分)如圖,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一點,BD=8,DE⊥AB,垂足為E,求線段DE的長.19.(8分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經(jīng)成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關(guān)于x的函數(shù)表達式;李華騎單車的時間(單位:分鐘)也受x的影響,其關(guān)系可以用來描述.請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.20.(8分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.21.(8分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.22.(10分)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.(1)求拋物線解析式;(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△MOA的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)m為何值時,S有最大值,這個最大值是多少?(3)若點Q是直線y=﹣x上的動點,過Q做y軸的平行線交拋物線于點P,判斷有幾個Q能使以點P,Q,B,O為頂點的四邊形是平行四邊形的點,直接寫出相應(yīng)的點Q的坐標(biāo).23.(12分)如圖1,一枚質(zhì)地均勻的正六面體骰子的六個面分別標(biāo)有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時針方向連續(xù)跳幾個邊長。如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落在圈D;若第二次擲得2,就從圈D開始順時針連續(xù)跳2個邊長,落得圈B;…設(shè)游戲者從圈A起跳.小賢隨機擲一次骰子,求落回到圈A的概率P1.小南隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?24.如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當(dāng)⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當(dāng)點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設(shè)點P運動的時間為t(秒).求當(dāng)以B、D、E為頂點的三角形是直角三角形時點E的坐標(biāo).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),可得答案:是有理數(shù),故選D.考點:有理數(shù).2、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點F作FP∥AE于P點(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當(dāng)點E,F(xiàn)分別是AB,AD中點時(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點E,F(xiàn)分別是AB,AD中點,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項錯誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項正確;綜上所述,正確的結(jié)論有①③⑤,共3個,故選B.考點:四邊形綜合題.3、D【解析】(1)結(jié)論A正確,理由如下:解析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)結(jié)論B正確,理由如下:如圖,連接EC,過點E作EF⊥BC于點F,由函數(shù)圖象可知,BC=BE=10cm,,∴EF=1.∴.(3)結(jié)論C正確,理由如下:如圖,過點P作PG⊥BQ于點G,∵BQ=BP=t,∴.(4)結(jié)論D錯誤,理由如下:當(dāng)t=12s時,點Q與點C重合,點P運動到ED的中點,設(shè)為N,如圖,連接NB,NC.此時AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此時△PBQ不是等腰三角形.故選D.4、C【解析】選項A,原式=-16;選項B,不能夠合并;選項C,原式=9b2;選項D,原式=5、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.6、B【解析】由一次函數(shù)的定義知,|m|=1且m-1≠0,所以m=-1,故選B.7、C【解析】
根據(jù)環(huán)比和同比的比較方法,驗證每一個選項即可.【詳解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正確;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正確;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C錯誤;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正確;故選C.【點睛】本題考查折線統(tǒng)計圖,同比和環(huán)比的意義;能夠從統(tǒng)計圖中獲取數(shù)據(jù),按要求對比數(shù)據(jù)是解題的關(guān)鍵.8、D【解析】
首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.9、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】31600000000=3.16×1.故選:C.【點睛】本題考查科學(xué)記數(shù)法,解題的關(guān)鍵是掌握科學(xué)記數(shù)法的表示.10、C【解析】分析:根據(jù)根與系數(shù)的關(guān)系可得出α+β=-、αβ=-3,將其代入=中即可求出結(jié)論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數(shù)的關(guān)系,牢記兩根之和等于-、兩根之積等于是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、10,,.【解析】解:如圖,過點A作AD⊥BC于點D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對角線長為:10;如圖②所示:AD=8,連接BC,過點C作CE⊥BD于點E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.12、a【解析】
利用整式的除法運算即可得出答案.【詳解】原式=a=a.【點睛】本題考查的知識點是整式的除法,解題關(guān)鍵是先將-a2變成a13、或5或1.【解析】
根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當(dāng)在△ADE中,DE=5,當(dāng)AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當(dāng)平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設(shè)平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.14、.【解析】
根據(jù)圓周角定理可得出∠AOB=60°,再根據(jù)弧長公式的計算即可.【詳解】∵∠ACB=30°,
∴∠AOB=60°,
∵OA=1cm,
∴的長=cm.故答案為:.【點睛】本題考查了弧長的計算以及圓周角定理,解題關(guān)鍵是掌握弧長公式l=.15、1【解析】
由兩圓的半徑分別為2和5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系和兩圓位置關(guān)系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.16、A【解析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點:幾何概率三、解答題(共8題,共72分)17、15千米.【解析】
首先設(shè)小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意可得等量關(guān)系:騎公共自行車方式所用的時間=自駕車方式所用的時間×4,根據(jù)等量關(guān)系,列出方程,再解即可.【詳解】:解:設(shè)小張用騎公共自行車方式上班平均每小時行駛x千米,根據(jù)題意列方程得:=4×解得:x=15,經(jīng)檢驗x=15是原方程的解且符合實際意義.答:小張用騎公共自行車方式上班平均每小時行駛15千米.18、1.【解析】試題分析:根據(jù)相似三角形的判定與性質(zhì),可得答案.試題解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BDAB=DEAC,∴DE=考點:相似三角形的判定與性質(zhì).19、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時間為39.5分鐘.【解析】
(1)根據(jù)表格中的數(shù)據(jù),運用待定系數(shù)法,即可求得y1關(guān)于x的函數(shù)表達式;(2)設(shè)李華從文化宮回到家所需的時間為y,則y=y1+y2=x2-9x+80,根據(jù)二次函數(shù)的性質(zhì),即可得出最短時間.【詳解】(1)設(shè)y1=kx+b,將(8,18),(9,20),代入y1=kx+b,得:解得所以y1關(guān)于x的函數(shù)解析式為y1=2x+2.(2)設(shè)李華從文化宮回到家所需的時間為y,則y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以當(dāng)x=9時,y取得最小值,最小值為39.5,答:李華應(yīng)選擇在B站出地鐵,才能使他從文化宮回到家所需的時間最短,最短時間為39.5分鐘.【點睛】本題主要考查了二次函數(shù)的應(yīng)用,解此類題的關(guān)鍵是通過題意,確定出二次函數(shù)的解析式,然后確定其最大值最小值,在求二次函數(shù)的最值時,一定要注意自變量x的取值范圍.20、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)連接OE,AE,由AB是⊙O的直徑,得到∠AEB=∠AEC=90°,根據(jù)四邊形ABCD是平行四邊形,得到PA=PC推出∠OEP=∠OAC=90°,根據(jù)切線的判定定理即可得到結(jié)論;(2)由AB是⊙O的直徑,得到∠AQB=90°根據(jù)相似三角形的性質(zhì)得到=PB?PQ,根據(jù)全等三角形的性質(zhì)得到PF=PE,求得PA=PE=EF,等量代換即可得到結(jié)論.試題解析:(1)連接OE,AE,∵AB是⊙O的直徑,∴∠AEB=∠AEC=90°,∵四邊形ABCD是平行四邊形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB?PQ,在△AFP與△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP?QP.考點:切線的判定;平行四邊形的性質(zhì);相似三角形的判定與性質(zhì).21、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】
(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點睛】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.22、(1)y=x2+x﹣4;(2)S關(guān)于m的函數(shù)關(guān)系式為S=﹣m2﹣2m+8,當(dāng)m=﹣1時,S有最大值9;(3)Q坐標(biāo)為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【解析】
(1)設(shè)拋物線解析式為y=ax2+bx+c,然后把點A、B、C的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求解即可;(2)利用拋物線的解析式表示出點M的縱坐標(biāo),從而得到點M到x軸的距離,然后根據(jù)三角形面積公式表示并整理即可得解,根據(jù)拋物線的性質(zhì)求出第三象限內(nèi)二次函數(shù)的最值,然后即可得解;(3)利用直線與拋物線的解析式表示出點P、Q的坐標(biāo),然后求出PQ的長度,再根據(jù)平行四邊形的對邊相等列出算式,然后解關(guān)于x的一元二次方程即可得解.【詳解】解:(1)設(shè)拋物線解析式為y=ax2+bx+c,∵拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴拋物線解析式為y=x2+x﹣4;(2)∵點M的橫坐標(biāo)為m,∴點M的縱坐標(biāo)為m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,點M為第三象限內(nèi)拋物線上一動點,∴當(dāng)m=﹣1時,S有最大值,最大值為S=9;故答案為S關(guān)于m的函數(shù)關(guān)系式為S=﹣m2﹣2m+8,當(dāng)m=﹣1時,S有最大值9;(3)∵點Q是直線y=﹣x上的動點,∴設(shè)點Q的坐標(biāo)為(a,﹣a),∵點P在拋物線上,且PQ∥y軸,∴點P的坐標(biāo)為(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以點P,Q,B,O為頂點的四邊形是平行四邊形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4時,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以點Q坐標(biāo)為(﹣4,4),②﹣a2﹣2a+4=﹣4時,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以點Q的坐標(biāo)為(﹣2+2,2﹣2)或(﹣2﹣2,2+2),綜上所述,Q坐標(biāo)為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【點睛】本題是對二次函數(shù)的綜合考查有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對邊相等的性質(zhì),平面直角坐標(biāo)系中兩點間的距離的表示,綜合性較強,但難度不大,仔細(xì)分析便不難求解.23、(1)落回到圈A的概率P1【解析】
(1)由共有6種等可能的結(jié)果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;
(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與最后落回到圈A的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵擲一次骰子有6種等可能的結(jié)果,只有擲的4時,才會落回到圈A,∴落回到圈A的概率P1(2)列表得:1234561((((((2((((((3((((((4((((((5((((((6((((((∵共有36種等可能的結(jié)果,當(dāng)兩次擲得的數(shù)字之和為4的倍數(shù),即(1,3)(2,2)(2,6∴p2∵P1∴可能性不一樣【點睛】本題考查了用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(4)4;(2);(4)點E的坐標(biāo)為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進而可求出BR.在Rt△ORB中運用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 粘土質(zhì)隔熱耐火磚企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 中小等翼緣T型鋼企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 粘度計企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 石英玻璃燒瓶企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 冷軋無縫管軋機企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 中測設(shè)備企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 日字環(huán)節(jié)鏈企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 粉煤灰制品企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 秤量車企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 學(xué)校預(yù)防未成年人犯罪活動方案
- 邏輯哲學(xué)論-英文版
- 背夾球-幼兒園中班游戲教案
- 工程倫理學(xué)教學(xué)課件
- 特斯拉核心零部件供應(yīng)鏈?zhǔn)崂矸治稣n件
- 電站項目、燃機基礎(chǔ)施工方案
- EPC模式下設(shè)計階段可施工性研究
- 學(xué)校辦學(xué)基本條件評估指標(biāo)體系修訂
- 生物設(shè)備 年產(chǎn)1000t淀粉酶工藝設(shè)
- 復(fù)合肥標(biāo)準(zhǔn)配方公式
- 核心機房施工現(xiàn)場安全管理規(guī)范
- 蘋果產(chǎn)業(yè)提質(zhì)增效10項專業(yè)技術(shù)
評論
0/150
提交評論