版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
正投影正投影1P一、視圖
用正投影法,將物體投影到某一投影面上,得到的投影稱為視圖。投影關(guān)系:投影面物人P一、視圖用正投影法,將物體投影到某一投影21、視圖:
視圖:是指將物體按正投影向投影面投射所得到的圖形.2、三視圖主視圖:光線自物體的前面向后投射所得的投影稱主視圖或正視圖;俯視圖:光線自物體的上面向下投射所得的投影稱俯視圖;左視圖:光線自物體的左面向右投射所得的投影稱左視圖;1、視圖:視圖:是指將物體按正投影向投影面投射所得到的圖3正面投影(主視圖)水平投影(俯視圖)XYZOvwH側(cè)面投影(左視圖)人物投影面正面投影水平投影XYZOvwH側(cè)面投影人物投影面4PR首先,觀察從長(zhǎng)方體的正前方的正投影主視圖PR首先,觀察從長(zhǎng)方體的正前方的正投影主視圖5PRQ其次,觀察從長(zhǎng)方體的正左方的正投影主視圖左視圖PRQ其次,觀察從長(zhǎng)方體的正左方的正投影主視圖左視圖6VHW再次,觀察從長(zhǎng)方體的正上方的正投影主視圖左視圖俯視圖VHW再次,觀察從長(zhǎng)方體的正上方的正投影主視圖左視圖7V正對(duì)投影面H豎直投影面W左側(cè)投影面VHWV正對(duì)投影面H豎直投影面W左側(cè)投影面VHW8V主視圖H左視圖W俯視圖VWHV主視圖H左視圖W俯視圖VWH9三視圖的形成
主視圖左視圖
俯視圖三視圖的形成主視圖左視圖俯視圖10球的三視圖
球的三視圖11圓柱的三視圖圓柱的三視圖12圓柱的三視圖主視圖左視圖俯視圖能看見的輪廓線和棱用實(shí)線表示,不能看見的輪廓線和棱用虛線表示。
圓柱的三視圖主視圖左視圖俯視圖能看見的輪廓線和棱用實(shí)13VHW主視圖俯視圖左視圖長(zhǎng)對(duì)正高平齊寬相等主、俯視圖…長(zhǎng)對(duì)正主、左視圖…高平齊俯、左視圖…寬相等3、視圖與視圖的關(guān)系
當(dāng)主視圖與俯視圖畫完后,左視圖應(yīng)該用分規(guī)畫,以保證三等關(guān)系。VHW主視圖俯視圖左視圖長(zhǎng)對(duì)正高平齊寬相等3、視圖與視圖的關(guān)14三視圖的對(duì)應(yīng)規(guī)律俯視圖和左視圖主視圖和俯視圖主視圖和左視圖----長(zhǎng)對(duì)正----高平齊----寬相等遮住的部分要畫成虛線啊可注意哦三視圖的對(duì)應(yīng)規(guī)律俯視圖和左視圖主視圖和俯視圖主視圖和左視圖-15圓柱,圓錐三視圖主視圖左視圖俯視圖老師提示:畫三視圖要認(rèn)真準(zhǔn)確
實(shí)物與數(shù)學(xué)
主視圖左視圖俯視圖·圓柱,圓錐三視圖主視圖左視圖俯視圖老師提示:畫三視圖要認(rèn)真準(zhǔn)16圓柱的三視圖主視圖左視圖俯視圖能看見的輪廓線和棱用實(shí)線表示,不能看見的輪廓線和棱用虛線表示。
圓柱的三視圖主視圖左視圖俯視圖能看見的輪廓線和棱用實(shí)17圓錐的三視圖主視圖左視圖俯視圖圓錐的三視圖主視圖左視圖俯視圖18圓臺(tái)圓臺(tái)主左俯圓臺(tái)圓臺(tái)主左俯19正視圖左視圖側(cè)視圖俯視圖正視圖左視圖側(cè)視圖俯視圖20棱錐的三視圖正四棱錐主左俯棱錐的三視圖正四棱錐主左俯21主視圖左視圖俯視圖四棱錐的三視圖主視主視圖左視圖俯視圖四棱錐的三視圖主視221.視圖:將物體按正投影向投影面投射所得到的圖形.abc正視圖俯視圖側(cè)視圖總結(jié):三視圖的概念1.視圖:將物體按正投影向投影面投射所得到的圖形.abc正視23二、三視圖的畫法規(guī)則:(1)高平齊:主視圖和左視圖的高保持平齊主視圖左視圖俯視圖高長(zhǎng)寬二、三視圖的畫法規(guī)則:(1)高平齊:主視圖和左視圖的高保持平24三、簡(jiǎn)單幾何體的三視圖:①棱柱的三視圖長(zhǎng)方體正三棱柱②棱錐的三視圖正三棱錐正四棱錐三、簡(jiǎn)單幾何體的三視圖:①棱柱的三視圖長(zhǎng)方體正三棱柱②棱錐的25③棱臺(tái)的三視圖正四棱臺(tái)④旋轉(zhuǎn)體的三視圖
圓柱圓錐·圓臺(tái)球③棱臺(tái)的三視圖正四棱臺(tái)④旋轉(zhuǎn)體的三視圖圓柱圓錐·圓臺(tái)球26棱臺(tái)的三視圖正四棱臺(tái)主左俯棱臺(tái)的三視圖正四棱臺(tái)主左俯27畫出這面這個(gè)四棱臺(tái)的三視圖。主視圖左視圖俯視圖畫出這面這個(gè)四棱臺(tái)的三視圖。主視圖左視圖俯視圖28幾種基本幾何體三視圖
1.圓柱、圓錐、球的三視圖
幾何體主視圖左視圖俯視圖知識(shí)回顧·幾種基本幾何體三視圖
1.圓柱、圓錐、球的三視圖
幾29幾種基本幾何體的三視圖2.棱柱、棱錐的三視圖幾何體主視圖左視圖俯視圖知識(shí)回顧注:看得見的輪廓線畫實(shí)線,看不見的輪廓線畫虛線幾種基本幾何體的三視圖幾何體主視圖左視圖俯視圖知識(shí)30畫出正五棱錐的主視圖注意:在繪制三視圖時(shí),不可見的邊界的輪廓線,用虛線畫出。主視圖畫出正五棱錐的主視圖注意:在繪制三視圖時(shí),不可見的邊界的輪廓31三視圖教學(xué)課件32畫下列幾何體的三視圖畫下列幾何體的三視圖33六棱柱六棱柱主左俯六棱柱六棱柱主左俯342.畫下例幾何體的三視圖主視圖左視圖俯視圖2.畫下例幾何體的三視圖主視圖左視圖俯視圖35畫下列幾何體的三視圖畫下列幾何體的三視圖36主視圖左視圖俯視圖2.
簡(jiǎn)單組合體的三視圖主視圖左視圖俯視圖2.簡(jiǎn)單組合體的三視圖37符合左視圖與主視圖長(zhǎng)對(duì)齊,主視圖和左視圖高對(duì)齊,俯視圖和左視圖寬對(duì)齊。畫一畫主視圖左視圖俯視圖符合左視圖與主視圖長(zhǎng)對(duì)齊,主視圖和左視圖高對(duì)381、球的三視圖2、圓柱的三視圖3、圓錐的三視圖1、球的三視圖39柱、錐、臺(tái)、球的三視圖柱、錐、臺(tái)、球的三視圖40簡(jiǎn)單組合體的三視圖簡(jiǎn)單組合體的三視圖41柱、錐、臺(tái)、球的三視圖柱、錐、臺(tái)、球的三視圖42下列兩組三視圖分別是什么幾何體?主視圖左視圖俯視圖主視圖左視圖俯視圖下列兩組三視圖分別是什么幾何體?主視圖左視圖俯視圖主視圖左視43四棱錐一個(gè)幾何體的三視圖如下,你能說出它是什么立體圖形嗎?
由三視圖想象幾何體四棱錐一個(gè)幾何體的三視圖如下,你能說出它是什么立體圖44下面是一些立體圖形的三視圖,請(qǐng)根據(jù)視圖說出立體圖形的名稱:
正視圖左視圖俯視圖圓錐例3:由三視圖想象幾何體下面是一些立體圖形的三視圖,請(qǐng)根據(jù)視圖說出立體圖形的451.三視圖如圖的幾何體是()A.三棱錐B.四棱錐C.四棱臺(tái)D.三棱臺(tái)課堂練習(xí)1.三視圖如圖的幾何體是46解析:由三視圖知,該幾何體是四棱錐,且其中一條棱與底面垂直.答案:B解析:由三視圖知,該幾何體是四棱錐,且其中一條棱與底面垂直.472.(教材習(xí)題改編)已知某物體的三視圖如圖所示,那么這個(gè)物體的形狀是()A.六棱柱
B.四棱柱C.圓柱
D.五棱柱三基能力強(qiáng)化2.(教材習(xí)題改編)已知某物體的三視圖如圖所示,那么這個(gè)物體48三基能力強(qiáng)化答案:A三基能力強(qiáng)化答案:A491.三視圖的正視圖、側(cè)視圖、俯視圖分別是從幾何體的正前方、正左方、正上方觀察幾何體畫出的輪廓線.畫三視圖的基本要求是:正俯一樣長(zhǎng),俯側(cè)一樣寬,正側(cè)一樣高.2.由三視圖想象幾何體特征時(shí)要根據(jù)“長(zhǎng)對(duì)正、寬相等、高平齊”的基本原則.1.三視圖的正視圖、側(cè)視圖、俯視圖分別是從幾何體的正前50【注意】嚴(yán)格按排列規(guī)則放置三視圖.并用虛線標(biāo)出長(zhǎng)寬高的關(guān)系.有利于準(zhǔn)確把握幾何體的結(jié)構(gòu)特征.3.對(duì)于簡(jiǎn)單幾何體的組合體,在畫其三視圖時(shí),首先應(yīng)分清它是由哪些簡(jiǎn)單幾何體組成的,然后再畫出其三視圖.【注意】嚴(yán)格按排列規(guī)則放置三視圖.并用虛線標(biāo)出長(zhǎng)寬高的關(guān)系514.三視圖(1)三視圖的特點(diǎn):①主、俯視圖
;②主、左視圖
;③俯、左視圖
,前后對(duì)應(yīng).(2)繪制簡(jiǎn)單組合體的三視圖要注意以下幾點(diǎn):①若相鄰兩物體的表面相交,表面的交線是它們的分界線.在三視圖中,分界線和可見輪廓線都用
畫出,不可見輪廓線用
畫出.②確定主視、俯視、左視的方向時(shí),同一物體放置的位置不同,所畫的三視圖
.③看清簡(jiǎn)單組合體是由哪幾個(gè)
生成的,并注意它們的生成方式,特別是它們的
位置.長(zhǎng)對(duì)正高平齊寬相等實(shí)線虛線可能不同基本幾何體交線4.三視圖(1)三視圖的特點(diǎn):①主、俯視圖52三視圖是新課標(biāo)中新增加的內(nèi)容,對(duì)考生要求較低,一般不會(huì)直接考查作圖,但經(jīng)常會(huì)與立體幾何中有關(guān)的計(jì)算問題融合在一起,如面積、體積的計(jì)算,從而考查考生的空間想象能力,因此要對(duì)常見的幾何體的三視圖有所理解,并能夠進(jìn)行識(shí)別和判斷.2009年山東卷巧妙地利用組合考查了由三視圖還原幾何體及體段的計(jì)算.三視圖是新課標(biāo)中新增加的內(nèi)容,對(duì)考生要求較53例1:(2009·福建高考)如下圖,某幾何體的正視圖與側(cè)視圖都是邊長(zhǎng)為1的正方形,且體積為,則該幾何體的俯視圖可以是()例1:(2009·福建高考)如下圖,某幾何體的正視圖與54(1)利用體積與幾何體的高先計(jì)算出底面積再進(jìn)行判斷;(2)排除法.(1)利用體積與幾何體的高先計(jì)算出底面積再進(jìn)行判斷;(2)55【解析】法一:∵體積為,而高為1,故底面積為,選C.法二:選項(xiàng)A得到的幾何體為正方體,其體積為1,故排除A;而選項(xiàng)B、D所得幾何體的體積都與π有關(guān),排除B、D;易知選項(xiàng)C符合.【答案】C【解析】法一:∵體積為,而高為1,故底面積為56(2009·山東高考)一空間幾何體的三視圖如圖所示,則該幾何體的體積為()A.2π+2B.4π+2C.2π+D.4π+(2009·山東高考)一57[思路點(diǎn)撥][思路點(diǎn)撥]58[解析]由幾何體的三視圖可知,該幾何體是由一個(gè)底面直徑和高都是2的圓柱和一個(gè)底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為2的正四棱錐疊放而成.故該幾何體的體積為[答案]C[解析]由幾何體的三視圖可知,該幾何體是由一個(gè)底面直徑和高59
探究點(diǎn)3
三視圖的畫法第35講│要點(diǎn)探究要點(diǎn)探究例3畫出如圖36-1所示幾何體的三視圖.探究點(diǎn)3三視圖的畫法第35講│要點(diǎn)探究要點(diǎn)探究例3畫出60第35講│要點(diǎn)探究【思路】
圖36-1(1)為正六棱柱,可按棱柱畫法畫出;圖36-1(2)為一個(gè)圓錐和一個(gè)圓臺(tái)的組合體,按圓錐、圓臺(tái)的三視圖畫法畫出它們的組合形狀.【解答】
三視圖如圖36-2所示:第35講│要點(diǎn)探究【思路】圖36-1(1)為正六棱柱,可按61第35講│要點(diǎn)探究第35講│要點(diǎn)探究62第35講│要點(diǎn)探究【點(diǎn)評(píng)】
畫簡(jiǎn)單的組合體的三視圖應(yīng)注意以下問題:(1)確定正視、俯視、側(cè)視的方向,同一物體放置的位置不同,所畫的三視圖可能不同.(2)看清簡(jiǎn)單組合體是由哪幾個(gè)基本幾何體組成的,并注意它們的組成方式,特別是它們的交線位置.(3)畫出的三視圖要檢驗(yàn)是否符合“長(zhǎng)對(duì)正,寬相等,高平齊”的基本特征,特別注意幾何體中與投影面垂直或平行的線及面的位置.第35講│要點(diǎn)探究【點(diǎn)評(píng)】畫簡(jiǎn)單的組合體的三視圖應(yīng)注意以下63解析:側(cè)視時(shí),看到一個(gè)矩形且不能有實(shí)對(duì)角線,故A、D排除,而正視時(shí),應(yīng)該有一條實(shí)對(duì)角線,且其對(duì)角線位置應(yīng)為B中所示.答案:B解析:側(cè)視時(shí),看到一個(gè)矩形且不能有實(shí)對(duì)角線,故A、D排除,而642.如圖,幾何體的正視圖和側(cè)視圖都正確的是()2.如圖,幾何體的正視圖和側(cè)視圖都正確的是653.某幾何體的三視圖如圖所示:則這個(gè)幾何體是
.3.某幾何體的三視圖如圖所示:則這個(gè)幾何體是.66解析::由三視圖可知,該幾何體為正五棱錐.答案:正五棱錐解析::由三視圖可知,該幾何體為正五棱錐.答案:正五棱錐674.已知某個(gè)幾何體的三視圖如圖,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是________.4.已知某個(gè)幾何體的三視圖如圖,根據(jù)圖中標(biāo)出的68解析:幾何體的圖為S-ABCD,且平面SCD⊥平面ABCD,ABCD為正方形,邊長(zhǎng)為20cm,S在底面的射影為CD的中點(diǎn)E,SE=20答案:解析:幾何體的圖為S-ABCD,答案:69三視圖教學(xué)課件70答案:A
答案:A71三視圖教學(xué)課件72答案:D
答案:D73三基能力強(qiáng)化3.關(guān)于如圖所示幾何體的正確說法為()①這是一個(gè)六面體②這是一個(gè)四棱臺(tái)③這是一個(gè)四棱柱④這是一個(gè)四棱柱和三棱柱的組合體⑤這是一個(gè)被截去一個(gè)三棱柱的四棱柱三基能力強(qiáng)化3.關(guān)于如圖所示幾何體的正確說法為()74A.①②③④⑤B.①③④⑤C.①④⑤D.①③④答案:A三基能力強(qiáng)化A.①②③④⑤B.①③④⑤三基能力強(qiáng)化75
三視圖是新課標(biāo)新增的內(nèi)容,是一個(gè)知識(shí)交匯的載體,因而是高考的重點(diǎn)內(nèi)容之一.但新課標(biāo)對(duì)這部分內(nèi)容的要求較低,一般不會(huì)直接考查畫圖的問題,而經(jīng)常會(huì)與立體幾何中有關(guān)的計(jì)算問題融合在一起考查.2009年廣東高考將三視圖與幾何體的體積計(jì)算、空間位置關(guān)系融為一體,考查了學(xué)生的空間想象能力,是一個(gè)新的考查方向.)
76
[考題印證](2009·廣東高考)(12分)某高速公路收費(fèi)站入口處的安全標(biāo)識(shí)墩如圖1所示.墩的上半部分是正四棱錐P-EFGH,下半部分是長(zhǎng)方體ABCD-EFGH.圖2、圖3分別是該標(biāo)識(shí)墩的正視圖和俯視圖.[考題印證]77(1)請(qǐng)畫出該安全標(biāo)識(shí)墩的側(cè)視圖;(2)求該安全標(biāo)識(shí)墩的體積;(3)證明:直線BD⊥平面PEG.(1)請(qǐng)畫出該安全標(biāo)識(shí)墩的側(cè)視圖;78【解】(1)該安全標(biāo)識(shí)墩側(cè)視圖如下圖所示.
┄┄┄┄┄┄┄┄(4分)【解】(1)該安全標(biāo)識(shí)墩側(cè)視圖如下圖所示.79(2)該安全標(biāo)識(shí)墩的體積V=VP-EFGH+VABCD-EFGH=×40×40×60+40×40×20=64000(cm3).┄┄(8分)(3)由題設(shè)知四邊形ABCD和四邊形EFGH均為正方形,∴FH⊥EG,又ABCD-EFGH為長(zhǎng)方體,∴BD∥FH.┄┄┄┄┄┄┄┄(9分)(2)該安全標(biāo)識(shí)墩的體積80設(shè)點(diǎn)O是EFGH的對(duì)稱中心,∵P-EFGH是正四棱錐,∴PO⊥平面EFGH,而FH?平面EFGH,∴PO⊥FH.┄┄┄┄┄┄┄┄(10分)∵FH⊥PO,F(xiàn)H⊥EG,PO∩EG=O,PO?平面PEG,EG?平面PEG,∴HF⊥平面PEG.而BD∥FH,故BD⊥平面PEG.┄┄┄┄┄┄┄┄┄┄┄┄(12分)設(shè)點(diǎn)O是EFGH的對(duì)稱中心,81第35講│要點(diǎn)探究變式題[2009·天津卷]如圖36-4所示是一個(gè)幾何體的三視圖,若它的體積是,則a=________.【答案】
第35講│要點(diǎn)探究變式題[2009·天津卷]如圖36-82第35講│要點(diǎn)探究【解析】
由三視圖可知,該幾何體為橫放的三棱柱,底面是底邊為2,高為a的三角形,棱柱的高為3.∴由已知可得
∴a=.第35講│要點(diǎn)探究【解析】由三視圖可知,該幾何體為橫放的三83三視圖教學(xué)課件84正投影正投影85P一、視圖
用正投影法,將物體投影到某一投影面上,得到的投影稱為視圖。投影關(guān)系:投影面物人P一、視圖用正投影法,將物體投影到某一投影861、視圖:
視圖:是指將物體按正投影向投影面投射所得到的圖形.2、三視圖主視圖:光線自物體的前面向后投射所得的投影稱主視圖或正視圖;俯視圖:光線自物體的上面向下投射所得的投影稱俯視圖;左視圖:光線自物體的左面向右投射所得的投影稱左視圖;1、視圖:視圖:是指將物體按正投影向投影面投射所得到的圖87正面投影(主視圖)水平投影(俯視圖)XYZOvwH側(cè)面投影(左視圖)人物投影面正面投影水平投影XYZOvwH側(cè)面投影人物投影面88PR首先,觀察從長(zhǎng)方體的正前方的正投影主視圖PR首先,觀察從長(zhǎng)方體的正前方的正投影主視圖89PRQ其次,觀察從長(zhǎng)方體的正左方的正投影主視圖左視圖PRQ其次,觀察從長(zhǎng)方體的正左方的正投影主視圖左視圖90VHW再次,觀察從長(zhǎng)方體的正上方的正投影主視圖左視圖俯視圖VHW再次,觀察從長(zhǎng)方體的正上方的正投影主視圖左視圖91V正對(duì)投影面H豎直投影面W左側(cè)投影面VHWV正對(duì)投影面H豎直投影面W左側(cè)投影面VHW92V主視圖H左視圖W俯視圖VWHV主視圖H左視圖W俯視圖VWH93三視圖的形成
主視圖左視圖
俯視圖三視圖的形成主視圖左視圖俯視圖94球的三視圖
球的三視圖95圓柱的三視圖圓柱的三視圖96圓柱的三視圖主視圖左視圖俯視圖能看見的輪廓線和棱用實(shí)線表示,不能看見的輪廓線和棱用虛線表示。
圓柱的三視圖主視圖左視圖俯視圖能看見的輪廓線和棱用實(shí)97VHW主視圖俯視圖左視圖長(zhǎng)對(duì)正高平齊寬相等主、俯視圖…長(zhǎng)對(duì)正主、左視圖…高平齊俯、左視圖…寬相等3、視圖與視圖的關(guān)系
當(dāng)主視圖與俯視圖畫完后,左視圖應(yīng)該用分規(guī)畫,以保證三等關(guān)系。VHW主視圖俯視圖左視圖長(zhǎng)對(duì)正高平齊寬相等3、視圖與視圖的關(guān)98三視圖的對(duì)應(yīng)規(guī)律俯視圖和左視圖主視圖和俯視圖主視圖和左視圖----長(zhǎng)對(duì)正----高平齊----寬相等遮住的部分要畫成虛線啊可注意哦三視圖的對(duì)應(yīng)規(guī)律俯視圖和左視圖主視圖和俯視圖主視圖和左視圖-99圓柱,圓錐三視圖主視圖左視圖俯視圖老師提示:畫三視圖要認(rèn)真準(zhǔn)確
實(shí)物與數(shù)學(xué)
主視圖左視圖俯視圖·圓柱,圓錐三視圖主視圖左視圖俯視圖老師提示:畫三視圖要認(rèn)真準(zhǔn)100圓柱的三視圖主視圖左視圖俯視圖能看見的輪廓線和棱用實(shí)線表示,不能看見的輪廓線和棱用虛線表示。
圓柱的三視圖主視圖左視圖俯視圖能看見的輪廓線和棱用實(shí)101圓錐的三視圖主視圖左視圖俯視圖圓錐的三視圖主視圖左視圖俯視圖102圓臺(tái)圓臺(tái)主左俯圓臺(tái)圓臺(tái)主左俯103正視圖左視圖側(cè)視圖俯視圖正視圖左視圖側(cè)視圖俯視圖104棱錐的三視圖正四棱錐主左俯棱錐的三視圖正四棱錐主左俯105主視圖左視圖俯視圖四棱錐的三視圖主視主視圖左視圖俯視圖四棱錐的三視圖主視1061.視圖:將物體按正投影向投影面投射所得到的圖形.abc正視圖俯視圖側(cè)視圖總結(jié):三視圖的概念1.視圖:將物體按正投影向投影面投射所得到的圖形.abc正視107二、三視圖的畫法規(guī)則:(1)高平齊:主視圖和左視圖的高保持平齊主視圖左視圖俯視圖高長(zhǎng)寬二、三視圖的畫法規(guī)則:(1)高平齊:主視圖和左視圖的高保持平108三、簡(jiǎn)單幾何體的三視圖:①棱柱的三視圖長(zhǎng)方體正三棱柱②棱錐的三視圖正三棱錐正四棱錐三、簡(jiǎn)單幾何體的三視圖:①棱柱的三視圖長(zhǎng)方體正三棱柱②棱錐的109③棱臺(tái)的三視圖正四棱臺(tái)④旋轉(zhuǎn)體的三視圖
圓柱圓錐·圓臺(tái)球③棱臺(tái)的三視圖正四棱臺(tái)④旋轉(zhuǎn)體的三視圖圓柱圓錐·圓臺(tái)球110棱臺(tái)的三視圖正四棱臺(tái)主左俯棱臺(tái)的三視圖正四棱臺(tái)主左俯111畫出這面這個(gè)四棱臺(tái)的三視圖。主視圖左視圖俯視圖畫出這面這個(gè)四棱臺(tái)的三視圖。主視圖左視圖俯視圖112幾種基本幾何體三視圖
1.圓柱、圓錐、球的三視圖
幾何體主視圖左視圖俯視圖知識(shí)回顧·幾種基本幾何體三視圖
1.圓柱、圓錐、球的三視圖
幾113幾種基本幾何體的三視圖2.棱柱、棱錐的三視圖幾何體主視圖左視圖俯視圖知識(shí)回顧注:看得見的輪廓線畫實(shí)線,看不見的輪廓線畫虛線幾種基本幾何體的三視圖幾何體主視圖左視圖俯視圖知識(shí)114畫出正五棱錐的主視圖注意:在繪制三視圖時(shí),不可見的邊界的輪廓線,用虛線畫出。主視圖畫出正五棱錐的主視圖注意:在繪制三視圖時(shí),不可見的邊界的輪廓115三視圖教學(xué)課件116畫下列幾何體的三視圖畫下列幾何體的三視圖117六棱柱六棱柱主左俯六棱柱六棱柱主左俯1182.畫下例幾何體的三視圖主視圖左視圖俯視圖2.畫下例幾何體的三視圖主視圖左視圖俯視圖119畫下列幾何體的三視圖畫下列幾何體的三視圖120主視圖左視圖俯視圖2.
簡(jiǎn)單組合體的三視圖主視圖左視圖俯視圖2.簡(jiǎn)單組合體的三視圖121符合左視圖與主視圖長(zhǎng)對(duì)齊,主視圖和左視圖高對(duì)齊,俯視圖和左視圖寬對(duì)齊。畫一畫主視圖左視圖俯視圖符合左視圖與主視圖長(zhǎng)對(duì)齊,主視圖和左視圖高對(duì)1221、球的三視圖2、圓柱的三視圖3、圓錐的三視圖1、球的三視圖123柱、錐、臺(tái)、球的三視圖柱、錐、臺(tái)、球的三視圖124簡(jiǎn)單組合體的三視圖簡(jiǎn)單組合體的三視圖125柱、錐、臺(tái)、球的三視圖柱、錐、臺(tái)、球的三視圖126下列兩組三視圖分別是什么幾何體?主視圖左視圖俯視圖主視圖左視圖俯視圖下列兩組三視圖分別是什么幾何體?主視圖左視圖俯視圖主視圖左視127四棱錐一個(gè)幾何體的三視圖如下,你能說出它是什么立體圖形嗎?
由三視圖想象幾何體四棱錐一個(gè)幾何體的三視圖如下,你能說出它是什么立體圖128下面是一些立體圖形的三視圖,請(qǐng)根據(jù)視圖說出立體圖形的名稱:
正視圖左視圖俯視圖圓錐例3:由三視圖想象幾何體下面是一些立體圖形的三視圖,請(qǐng)根據(jù)視圖說出立體圖形的1291.三視圖如圖的幾何體是()A.三棱錐B.四棱錐C.四棱臺(tái)D.三棱臺(tái)課堂練習(xí)1.三視圖如圖的幾何體是130解析:由三視圖知,該幾何體是四棱錐,且其中一條棱與底面垂直.答案:B解析:由三視圖知,該幾何體是四棱錐,且其中一條棱與底面垂直.1312.(教材習(xí)題改編)已知某物體的三視圖如圖所示,那么這個(gè)物體的形狀是()A.六棱柱
B.四棱柱C.圓柱
D.五棱柱三基能力強(qiáng)化2.(教材習(xí)題改編)已知某物體的三視圖如圖所示,那么這個(gè)物體132三基能力強(qiáng)化答案:A三基能力強(qiáng)化答案:A1331.三視圖的正視圖、側(cè)視圖、俯視圖分別是從幾何體的正前方、正左方、正上方觀察幾何體畫出的輪廓線.畫三視圖的基本要求是:正俯一樣長(zhǎng),俯側(cè)一樣寬,正側(cè)一樣高.2.由三視圖想象幾何體特征時(shí)要根據(jù)“長(zhǎng)對(duì)正、寬相等、高平齊”的基本原則.1.三視圖的正視圖、側(cè)視圖、俯視圖分別是從幾何體的正前134【注意】嚴(yán)格按排列規(guī)則放置三視圖.并用虛線標(biāo)出長(zhǎng)寬高的關(guān)系.有利于準(zhǔn)確把握幾何體的結(jié)構(gòu)特征.3.對(duì)于簡(jiǎn)單幾何體的組合體,在畫其三視圖時(shí),首先應(yīng)分清它是由哪些簡(jiǎn)單幾何體組成的,然后再畫出其三視圖.【注意】嚴(yán)格按排列規(guī)則放置三視圖.并用虛線標(biāo)出長(zhǎng)寬高的關(guān)系1354.三視圖(1)三視圖的特點(diǎn):①主、俯視圖
;②主、左視圖
;③俯、左視圖
,前后對(duì)應(yīng).(2)繪制簡(jiǎn)單組合體的三視圖要注意以下幾點(diǎn):①若相鄰兩物體的表面相交,表面的交線是它們的分界線.在三視圖中,分界線和可見輪廓線都用
畫出,不可見輪廓線用
畫出.②確定主視、俯視、左視的方向時(shí),同一物體放置的位置不同,所畫的三視圖
.③看清簡(jiǎn)單組合體是由哪幾個(gè)
生成的,并注意它們的生成方式,特別是它們的
位置.長(zhǎng)對(duì)正高平齊寬相等實(shí)線虛線可能不同基本幾何體交線4.三視圖(1)三視圖的特點(diǎn):①主、俯視圖136三視圖是新課標(biāo)中新增加的內(nèi)容,對(duì)考生要求較低,一般不會(huì)直接考查作圖,但經(jīng)常會(huì)與立體幾何中有關(guān)的計(jì)算問題融合在一起,如面積、體積的計(jì)算,從而考查考生的空間想象能力,因此要對(duì)常見的幾何體的三視圖有所理解,并能夠進(jìn)行識(shí)別和判斷.2009年山東卷巧妙地利用組合考查了由三視圖還原幾何體及體段的計(jì)算.三視圖是新課標(biāo)中新增加的內(nèi)容,對(duì)考生要求較137例1:(2009·福建高考)如下圖,某幾何體的正視圖與側(cè)視圖都是邊長(zhǎng)為1的正方形,且體積為,則該幾何體的俯視圖可以是()例1:(2009·福建高考)如下圖,某幾何體的正視圖與138(1)利用體積與幾何體的高先計(jì)算出底面積再進(jìn)行判斷;(2)排除法.(1)利用體積與幾何體的高先計(jì)算出底面積再進(jìn)行判斷;(2)139【解析】法一:∵體積為,而高為1,故底面積為,選C.法二:選項(xiàng)A得到的幾何體為正方體,其體積為1,故排除A;而選項(xiàng)B、D所得幾何體的體積都與π有關(guān),排除B、D;易知選項(xiàng)C符合.【答案】C【解析】法一:∵體積為,而高為1,故底面積為140(2009·山東高考)一空間幾何體的三視圖如圖所示,則該幾何體的體積為()A.2π+2B.4π+2C.2π+D.4π+(2009·山東高考)一141[思路點(diǎn)撥][思路點(diǎn)撥]142[解析]由幾何體的三視圖可知,該幾何體是由一個(gè)底面直徑和高都是2的圓柱和一個(gè)底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為2的正四棱錐疊放而成.故該幾何體的體積為[答案]C[解析]由幾何體的三視圖可知,該幾何體是由一個(gè)底面直徑和高143
探究點(diǎn)3
三視圖的畫法第35講│要點(diǎn)探究要點(diǎn)探究例3畫出如圖36-1所示幾何體的三視圖.探究點(diǎn)3三視圖的畫法第35講│要點(diǎn)探究要點(diǎn)探究例3畫出144第35講│要點(diǎn)探究【思路】
圖36-1(1)為正六棱柱,可按棱柱畫法畫出;圖36-1(2)為一個(gè)圓錐和一個(gè)圓臺(tái)的組合體,按圓錐、圓臺(tái)的三視圖畫法畫出它們的組合形狀.【解答】
三視圖如圖36-2所示:第35講│要點(diǎn)探究【思路】圖36-1(1)為正六棱柱,可按145第35講│要點(diǎn)探究第35講│要點(diǎn)探究146第35講│要點(diǎn)探究【點(diǎn)評(píng)】
畫簡(jiǎn)單的組合體的三視圖應(yīng)注意以下問題:(1)確定正視、俯視、側(cè)視的方向,同一物體放置的位置不同,所畫的三視圖可能不同.(2)看清簡(jiǎn)單組合體是由哪幾個(gè)基本幾何體組成的,并注意它們的組成方式,特別是它們的交線位置.(3)畫出的三視圖要檢驗(yàn)是否符合“長(zhǎng)對(duì)正,寬相等,高平齊”的基本特征,特別注意幾何體中與投影面垂直或平行的線及面的位置.第35講│要點(diǎn)探究【點(diǎn)評(píng)】畫簡(jiǎn)單的組合體的三視圖應(yīng)注意以下147解析:側(cè)視時(shí),看到一個(gè)矩形且不能有實(shí)對(duì)角線,故A、D排除,而正視時(shí),應(yīng)該有一條實(shí)對(duì)角線,且其對(duì)角線位置應(yīng)為B中所示.答案:B解析:側(cè)視時(shí),看到一個(gè)矩形且不能有實(shí)對(duì)角線,故A、D排除,而1482.如圖,幾何體的正視圖和側(cè)視圖都正確的是()2.如圖,幾何體的正視圖和側(cè)視圖都正確的是1493.某幾何體的三視圖如圖所示:則這個(gè)幾何體是
.3.某幾何體的三視圖如圖所示:則這個(gè)幾何體是.150解析::由三視圖可知,該幾何體為正五棱錐.答案:正五棱錐解析::由三視圖可知,該幾何體為正五棱錐.答案:正五棱錐1514.已知某個(gè)幾何體的三視圖如圖,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是________.4.已知某個(gè)幾何體的三視圖如圖,根據(jù)圖中標(biāo)出的152解析:幾何體的圖為S-ABCD,且平面SCD⊥平面ABCD,ABCD為正方形,邊長(zhǎng)為20cm,S在底面的射影為CD的中點(diǎn)E,SE=20答案:解析:幾何體的圖為S-ABCD,答案:153三視圖教學(xué)課件154答案:A
答案:A155三視圖教學(xué)課件156答案:D
答案:D157三基能力強(qiáng)化3.關(guān)于如圖所示幾何體的正確說法為()①這是一個(gè)六面體②這是一個(gè)四棱臺(tái)③
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《家庭親情圖片》課件
- 單位管理制度集合大合集職員管理十篇
- 單位管理制度匯編大合集人員管理篇十篇
- 《孔子世家原文》課件
- 單位管理制度范例合集職工管理篇十篇
- 單位管理制度呈現(xiàn)合集【人事管理篇】十篇
- 九年級(jí)政治東西南北課件
- 七年級(jí)英語單詞課件
- 《生活中的規(guī)則》課件
- 第2單元 社會(huì)主義制度的建立與社會(huì)主義建設(shè)的探索 (B卷·能力提升練)(解析版)
- 2024年叉車租賃合同經(jīng)典版(四篇)
- 小學(xué)科學(xué)青島版(六三制)六年級(jí)上冊(cè)全冊(cè)教案(共25課)(2022秋)
- 2024焊接工藝規(guī)程
- 外研版(2024新版)七年級(jí)上冊(cè)英語期末復(fù)習(xí)Unit1~6共6套學(xué)業(yè)質(zhì)量檢測(cè)試卷匯編(含答案)
- 藥理學(xué)期末試卷
- 小學(xué)高年級(jí)課后服務(wù) scratch3.0編程教學(xué)設(shè)計(jì) 一階第27課 植物大戰(zhàn)僵尸-僵尸來襲教學(xué)設(shè)計(jì)
- 2024年人民日?qǐng)?bào)社招聘應(yīng)屆高校畢業(yè)生85人筆試高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 中西醫(yī)結(jié)合科工作制度
- 沈鼓集團(tuán)招聘筆試題庫(kù)2024
- 高中人教版必修一全冊(cè)歷史期末總復(fù)習(xí)重要知識(shí)點(diǎn)歸納
- 2024年網(wǎng)絡(luò)安全知識(shí)競(jìng)賽考試題庫(kù)500題(含答案)
評(píng)論
0/150
提交評(píng)論