版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
八年級下平行四邊形拔高訓(xùn)練(含答案)八年級下平行四邊形拔高訓(xùn)練(含答案)八年級下平行四邊形拔高訓(xùn)練(含答案)資料僅供參考文件編號:2022年4月八年級下平行四邊形拔高訓(xùn)練(含答案)版本號:A修改號:1頁次:1.0審核:批準(zhǔn):發(fā)布日期:初中數(shù)學(xué)組卷(平行四邊形)一.選擇題(共12小題)1.(2015?溫州模擬)如圖,若干全等正五邊形排成環(huán)狀.圖中所示的是前3個五邊形,要完成這一圓環(huán)還需()個五邊形.A.6B.7C.8D.92.(2015?閘北區(qū)二模)一個正多邊形繞它的中心旋轉(zhuǎn)45°后,就與原正多邊形第一次重合,那么這個正多邊形()A.是軸對稱圖形,但不是中心對稱圖形B.是中心對稱圖形,但不是軸對稱圖形C.既是軸對稱圖形,又是中心對稱圖形D.既不是軸對稱圖形,也不是中心對稱圖形3.(2014?棗莊)如圖,△ABC中,AB=4,AC=3,AD、AE分別是其角平分線和中線,過點(diǎn)C作CG⊥AD于F,交AB于G,連接EF,則線段EF的長為()A.B.1C.D.74.(2014?武漢模擬)如圖∠A=∠ABC=∠C=45°,E、F分別是AB、BC的中點(diǎn),則下列結(jié)論,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正確的是()A.①②③④B.①②③C.①②④D.②③④5.(2013?鐵嶺)如果三角形的兩邊長分別是方程x2﹣8x+15=0的兩個根,那么連接這個三角形三邊的中點(diǎn),得到的三角形的周長可能是()A.5.5B.5C.4.5D.46.(2013?淄博)如圖,△ABC的周長為26,點(diǎn)D,E都在邊BC上,∠ABC的平分線垂直于AE,垂足為Q,∠ACB的平分線垂直于AD,垂足為P,若BC=10,則PQ的長為()A.B.C.3D.47.(2013?泰安)如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的邊長為()A.2B.4C.4D.88.(2013?湘西州)如圖,在?ABCD中,E是AD邊上的中點(diǎn),連接BE,并延長BE交CD延長線于點(diǎn)F,則△EDF與△BCF的周長之比是()A.1:2B.1:3C.1:4D.1:59.(2013?無錫)已知點(diǎn)A(0,0),B(0,4),C(3,t+4),D(3,t).記N(t)為?ABCD內(nèi)部(不含邊界)整點(diǎn)的個數(shù),其中整點(diǎn)是指橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn),則N(t)所有可能的值為()A.6、7B.7、8C.6、7、8D.6、8、910.(2013?達(dá)州)如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,點(diǎn)D在BC上,以AC為對角線的所有?ADCE中,DE最小的值是()A.2B.3C.4D.511.(2010?泉州)如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點(diǎn)D,E分別是邊AB、AC上,將△ABC沿著DE重疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.140°B.130°C.110°D.70°12.(2010?綦江縣)如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A、E之間,連接CE、CF,EF,則以下四個結(jié)論一定正確的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二.填空題(共10小題)13.(2014?安徽)如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是.(把所有正確結(jié)論的序號都填在橫線上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.14.(2014?福州)如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),延長BC到點(diǎn)F,使CF=BC.若AB=10,則EF的長是.15.(2014?江漢區(qū)二模)如圖,在四邊形ABCD中,E、F分別是AB、AD的中點(diǎn),若EF=2,BC=5,CD=3,則tanC=.16.(2013?濱州)在?ABCD中,點(diǎn)O是對角線AC、BD的交點(diǎn),點(diǎn)E是邊CD的中點(diǎn),且AB=6,BC=10,則OE=.17.(2013?鞍山)如圖,D是△ABC內(nèi)一點(diǎn),BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分別是AB、AC、CD、BD的中點(diǎn),則四邊形EFGH的周長是.18.(2013?烏魯木齊)如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=5,AC=2,則DF的長為.19.(2013?荊州)如圖,△ACE是以?ABCD的對角線AC為邊的等邊三角形,點(diǎn)C與點(diǎn)E關(guān)于x軸對稱.若E點(diǎn)的坐標(biāo)是(7,﹣3),則D點(diǎn)的坐標(biāo)是.20.(2013?寧波自主招生)如圖,E、F分別是?ABCD的邊AB、CD上的點(diǎn),AF與DE相交于點(diǎn)P,BF與CE相交于點(diǎn)Q,若S△APD=10cm2,S△BQC=20cm2,則陰影部分的面積為.21.(2013?南崗區(qū)校級一模)如圖,AD、BE為△ABC的中線交于點(diǎn)O,∠AOE=60°,OD=,OE=,則AB=.22.(2013?灌云縣模擬)在四邊形ABCD中,對角線AC⊥BD且AC=6、BD=8,E、F分別是邊AB、CD的中點(diǎn),則EF=.三.解答題(共8小題)23.(2013?常德)已知兩個共一個頂點(diǎn)的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點(diǎn),連接MB、ME.(1)如圖1,當(dāng)CB與CE在同一直線上時(shí),求證:MB∥CF;(2)如圖1,若CB=a,CE=2a,求BM,ME的長;(3)如圖2,當(dāng)∠BCE=45°時(shí),求證:BM=ME.24.(2013?南充)如圖,在平行四邊形ABCD中,對角線AC,BD交于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.求證:OE=OF.25.(2013?新疆)如圖,?ABCD中,點(diǎn)O是AC與BD的交點(diǎn),過點(diǎn)O的直線與BA、DC的延長線分別交于點(diǎn)E、F.(1)求證:△AOE≌△COF;(2)請連接EC、AF,則EF與AC滿足什么條件時(shí),四邊形AECF是矩形,并說明理由.26.(2013?重慶)已知,如圖,在?ABCD中,AE⊥BC,垂足為E,CE=CD,點(diǎn)F為CE的中點(diǎn),點(diǎn)G為CD上的一點(diǎn),連接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的長;(2)求證:∠CEG=∠AGE.27.(2013?郴州)如圖,已知BE∥DF,∠ADF=∠CBE,AF=CE,求證:四邊形DEBF是平行四邊形.28.(2013?沙坪壩區(qū)模擬)如圖,?ABCD中,AC與BD相交于點(diǎn)O,∠ABD=2∠DBC,AE⊥BD于點(diǎn)E.(1)若∠ADB=25°,求∠BAE的度數(shù);(2)求證:AB=2OE.29.(2013?江北區(qū)校級模擬)如圖,已知?ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.過點(diǎn)D作DC的垂線,分別交AE、AB于點(diǎn)M、N.(1)若M為AG中點(diǎn),且DM=2,求DE的長;(2)求證:AB=CF+DM.30.(2013?重慶模擬)如圖,已知?ABCD中,DE⊥BC于點(diǎn)E,DH⊥AB于點(diǎn)H,AF平分∠BAD,分別交DC、DE、DH于點(diǎn)F、G、M,且DE=AD.(1)求證:△ADG≌△FDM.(2)猜想AB與DG+CE之間有何數(shù)量關(guān)系,并證明你的猜想.
初中數(shù)學(xué)組卷(平行四邊形)參考答案與試題解析一.選擇題(共12小題)1.(2015?溫州模擬)如圖,若干全等正五邊形排成環(huán)狀.圖中所示的是前3個五邊形,要完成這一圓環(huán)還需()個五邊形.A.6B.7C.8D.9考點(diǎn):多邊形內(nèi)角與外角.專題:應(yīng)用題;壓軸題.分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個內(nèi)角的度數(shù),再延長五邊形的兩邊相交于一點(diǎn),并根據(jù)四邊形的內(nèi)角和求出這個角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個數(shù),然后減去3即可得解.解答:解:五邊形的內(nèi)角和為(5﹣2)?180°=540°,所以正五邊形的每一個內(nèi)角為540°÷5=108°,如圖,延長正五邊形的兩邊相交于點(diǎn)O,則∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已經(jīng)有3個五邊形,∴10﹣3=7,即完成這一圓環(huán)還需7個五邊形.故選B.點(diǎn)評:本題考查了多邊形的內(nèi)角和公式,延長正五邊形的兩邊相交于一點(diǎn),并求出這個角的度數(shù)是解題的關(guān)鍵,注意需要減去已有的3個正五邊形.2.(2015?閘北區(qū)二模)一個正多邊形繞它的中心旋轉(zhuǎn)45°后,就與原正多邊形第一次重合,那么這個正多邊形()A.是軸對稱圖形,但不是中心對稱圖形B.是中心對稱圖形,但不是軸對稱圖形C.既是軸對稱圖形,又是中心對稱圖形D.既不是軸對稱圖形,也不是中心對稱圖形考點(diǎn):中心對稱圖形;軸對稱圖形.專題:幾何圖形問題;綜合題;壓軸題.分析:先根據(jù)旋轉(zhuǎn)對稱圖形的定義得出這個正多邊形是正八邊形、再根據(jù)軸對稱圖形和中心對稱圖形的定義即可解答.解答:解:∵一個正多邊形繞著它的中心旋轉(zhuǎn)45°后,能與原正多邊形重合,360°÷45°=8,∴這個正多邊形是正八邊形.正八邊形既是軸對稱圖形,又是中心對稱圖形.故選C.點(diǎn)評:本題綜合考查了旋轉(zhuǎn)對稱圖形的概念,中心對稱圖形和軸對稱圖形的定義.根據(jù)定義,得一個正n邊形只要旋轉(zhuǎn)的倍數(shù)角即可.奇數(shù)邊的正多邊形只是軸對稱圖形,偶數(shù)邊的正多邊形既是軸對稱圖形,又是中心對稱圖形.3.(2014?棗莊)如圖,△ABC中,AB=4,AC=3,AD、AE分別是其角平分線和中線,過點(diǎn)C作CG⊥AD于F,交AB于G,連接EF,則線段EF的長為()A.B.1C.D.7考點(diǎn):三角形中位線定理;等腰三角形的判定與性質(zhì).專題:幾何圖形問題;壓軸題.分析:由等腰三角形的判定方法可知△AGC是等腰三角形,所以F為GC中點(diǎn),再由已知條件可得EF為△CBG的中位線,利用中位線的性質(zhì)即可求出線段EF的長.解答:解:∵AD是其角平分線,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=4,AC=3,∴BG=1,∵AE是中線,∴BE=CE,∴EF為△CBG的中位線,∴EF=BG=,故選:A.點(diǎn)評:本題考查了等腰三角形的判定和性質(zhì)、三角形的中位線性質(zhì)定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.4.(2014?武漢模擬)如圖∠A=∠ABC=∠C=45°,E、F分別是AB、BC的中點(diǎn),則下列結(jié)論,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正確的是()A.①②③④B.①②③C.①②④D.②③④考點(diǎn):三角形中位線定理;全等三角形的判定與性質(zhì).專題:壓軸題.分析:根據(jù)三角形的中位線定理“三角形的中位線平行于第三邊”同時(shí)利用三角形的全等性質(zhì)求解.解答:解:如下圖所示:連接AC,延長BD交AC于點(diǎn)M,延長AD交BC于Q,延長CD交AB于P.∵∠ABC=∠C=45°∴CP⊥AB∵∠ABC=∠A=45°∴AQ⊥BC點(diǎn)D為兩條高的交點(diǎn),所以BM為AC邊上的高,即:BM⊥AC.由中位線定理可得EF∥AC,EF=AC∴BD⊥EF,故①正確.∵∠DBQ+∠DCA=45°,∠DCA+∠CAQ=45°,∴∠DBQ=∠CAQ,∵∠A=∠ABC,∴AQ=BQ,∵∠BQD=∠AQC=90°,∴根據(jù)以上條件得△AQC≌△BQD,∴BD=AC∴EF=AC,故②正確.∵∠A=∠ABC=∠C=45°∴∠DAC+∠DCA=180°﹣(∠A+∠ABC+∠C)=45°∴∠ADC=180°﹣(∠DAC+∠DCA)=135°=∠BEF+∠BFE=180°﹣∠ABC故③∠ADC=∠BEF+∠BFE成立;無法證明AD=CD,故④錯誤.故選B.點(diǎn)評:本題考點(diǎn)在于三角形的中位線和三角形全等的判斷及應(yīng)用.5.(2013?鐵嶺)如果三角形的兩邊長分別是方程x2﹣8x+15=0的兩個根,那么連接這個三角形三邊的中點(diǎn),得到的三角形的周長可能是()A.5.5B.5C.4.5D.4考點(diǎn):三角形中位線定理;解一元二次方程-因式分解法;三角形三邊關(guān)系.專題:壓軸題.分析:首先解方程求得三角形的兩邊長,則第三邊的范圍可以求得,進(jìn)而得到三角形的周長l的范圍,而連接這個三角形三邊的中點(diǎn),得到的三角形的周長一定是l的一半,從而求得中點(diǎn)三角形的周長的范圍,從而確定.解答:解:解方程x2﹣8x+15=0得:x1=3,x2=5,則第三邊c的范圍是:2<c<8.則三角形的周長l的范圍是:10<l<16,∴連接這個三角形三邊的中點(diǎn),得到的三角形的周長m的范圍是:5<m<8.故滿足條件的只有A.故選A.點(diǎn)評:本題考查了三角形的三邊關(guān)系以及三角形的中位線的性質(zhì),理解原來的三角形與中點(diǎn)三角形周長之間的關(guān)系式關(guān)鍵.6.(2013?淄博)如圖,△ABC的周長為26,點(diǎn)D,E都在邊BC上,∠ABC的平分線垂直于AE,垂足為Q,∠ACB的平分線垂直于AD,垂足為P,若BC=10,則PQ的長為()A.B.C.3D.4考點(diǎn):三角形中位線定理;等腰三角形的判定與性質(zhì).專題:幾何圖形問題;壓軸題.分析:首先判斷△BAE、△CAD是等腰三角形,從而得出BA=BE,CA=CD,由△ABC的周長為26,及BC=10,可得DE=6,利用中位線定理可求出PQ.解答:解:∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴點(diǎn)Q是AE中點(diǎn),點(diǎn)P是AD中點(diǎn)(三線合一),∴PQ是△ADE的中位線,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6,∴PQ=DE=3.故選:C.點(diǎn)評:本題考查了三角形的中位線定理,解答本題的關(guān)鍵是判斷出△BAE、△CAD是等腰三角形,利用等腰三角形的性質(zhì)確定PQ是△ADE的中位線.7.(2013?泰安)如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的邊長為()A.2B.4C.4D.8考點(diǎn):平行四邊形的性質(zhì);等腰三角形的判定與性質(zhì);含30度角的直角三角形;勾股定理.專題:計(jì)算題;壓軸題.分析:由AE為角平分線,得到一對角相等,再由ABCD為平行四邊形,得到AD與BE平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,等量代換及等角對等邊得到AD=DF,由F為DC中點(diǎn),AB=CD,求出AD與DF的長,得出三角形ADF為等腰三角形,根據(jù)三線合一得到G為AF中點(diǎn),在直角三角形ADG中,由AD與DG的長,利用勾股定理求出AG的長,進(jìn)而求出AF的長,再由三角形ADF與三角形ECF全等,得出AF=EF,即可求出AE的長.解答:解:∵AE為∠DAB的平分線,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F為DC的中點(diǎn),∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根據(jù)勾股定理得:AG=,則AF=2AG=2,∵平行四邊形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,則AE=2AF=4.故選:B點(diǎn)評:此題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,等腰三角形的判定與性質(zhì),熟練掌握平行四邊形的判定與性質(zhì)是解本題的關(guān)鍵.8.(2013?湘西州)如圖,在?ABCD中,E是AD邊上的中點(diǎn),連接BE,并延長BE交CD延長線于點(diǎn)F,則△EDF與△BCF的周長之比是()A.1:2B.1:3C.1:4D.1:5考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì).專題:壓軸題.分析:根據(jù)平行四邊形性質(zhì)得出AD=BC,AD∥BC,推出△EDF∽△BCF,得出△EDF與△BCF的周長之比為,根據(jù)BC=AD=2DE代入求出即可.解答:解:∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∴△EDF∽△BCF,∴△EDF與△BCF的周長之比為,∵E是AD邊上的中點(diǎn),∴AD=2DE,∵AD=BC,∴BC=2DE,∴△EDF與△BCF的周長之比1:2,故選A.點(diǎn)評:本題考查了平行四邊形性質(zhì),相似三角形的性質(zhì)和判定的應(yīng)用,注意:平行四邊形的對邊平行且相等,相似三角形的周長之比等于相似比.9.(2013?無錫)已知點(diǎn)A(0,0),B(0,4),C(3,t+4),D(3,t).記N(t)為?ABCD內(nèi)部(不含邊界)整點(diǎn)的個數(shù),其中整點(diǎn)是指橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn),則N(t)所有可能的值為()A.6、7B.7、8C.6、7、8D.6、8、9考點(diǎn):平行四邊形的性質(zhì);坐標(biāo)與圖形性質(zhì).專題:壓軸題.分析:分別求出t=1,t=1.5,t=2,t=0時(shí)的整數(shù)點(diǎn),根據(jù)答案即可求出答案.解答:解:當(dāng)t=0時(shí),A(0,0),B(0,4),C(3,4),D(3,0),此時(shí)整數(shù)點(diǎn)有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6個點(diǎn);當(dāng)t=1時(shí),A(0,0),B(0,4),C(3,5),D(3,1),此時(shí)整數(shù)點(diǎn)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8個點(diǎn);當(dāng)t=1.5時(shí),A(0,0),B(0,4),C(3,5.5),D(3,1.5),此時(shí)整數(shù)點(diǎn)有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7個點(diǎn);當(dāng)t=2時(shí),A(0,0),B(0,4),C(3,6),D(3,2),此時(shí)整數(shù)點(diǎn)有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8個點(diǎn);故選項(xiàng)A錯誤,選項(xiàng)B錯誤;選項(xiàng)D錯誤,選項(xiàng)C正確;故選:C.點(diǎn)評:本題考查了平行四邊形的性質(zhì).主要考查學(xué)生的理解能力和歸納能力.10.(2013?達(dá)州)如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,點(diǎn)D在BC上,以AC為對角線的所有?ADCE中,DE最小的值是()A.2B.3C.4D.5考點(diǎn):平行四邊形的性質(zhì);垂線段最短;平行線之間的距離.專題:壓軸題.分析:由平行四邊形的對角線互相平分、垂線段最短知,當(dāng)OD⊥BC時(shí),DE線段取最小值.解答:解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB.∵四邊形ADCE是平行四邊形,∴OD=OE,OA=OC.∴當(dāng)OD取最小值時(shí),DE線段最短,此時(shí)OD⊥BC.∴OD∥AB.又點(diǎn)O是AC的中點(diǎn),∴OD是△ABC的中位線,∴OD=AB=1.5,∴ED=2OD=3.故選B.點(diǎn)評:本題考查了平行四邊形的性質(zhì),以及垂線段最短.解答該題時(shí),利用了“平行四邊形的對角線互相平分”的性質(zhì).11.(2010?泉州)如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點(diǎn)D,E分別是邊AB、AC上,將△ABC沿著DE重疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.140°B.130°C.110°D.70°考點(diǎn):多邊形內(nèi)角與外角.專題:壓軸題.分析:首先根據(jù)四邊形的內(nèi)角和公式可以求出四邊形ADA′E的內(nèi)角和,由折疊可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,又∠A=70°,由此可以求出∠AED+∠A′ED+∠ADE+∠A′DE,再利用鄰補(bǔ)角的關(guān)系即可求出∠1+∠2.解答:解:∵四邊形ADA′E的內(nèi)角和為(4﹣2)?180°=360°,而由折疊可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.故選:A.點(diǎn)評:本題考查根據(jù)多邊形的內(nèi)角和計(jì)算公式求和多邊形相關(guān)的角的度數(shù),解答時(shí)要會根據(jù)公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理.12.(2010?綦江縣)如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A、E之間,連接CE、CF,EF,則以下四個結(jié)論一定正確的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì);等邊三角形的判定.專題:壓軸題.分析:根據(jù)題意,結(jié)合圖形,對選項(xiàng)一一求證,判定正確選項(xiàng).解答:解:∵△ABE、△ADF是等邊三角形∴FD=AD,BE=AB∵AD=BC,AB=DC∴FD=BC,BE=DC∵∠B=∠D,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF≌△EBC,故①正確;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°﹣∠CDA)=300°﹣∠CDA,∠FDC=360°﹣∠FDA﹣∠ADC=300°﹣∠CDA,∴∠CDF=∠EAF,故②正確;同理可得:∠CBE=∠EAF=∠CDF,∵BC=AD=AF,BE=AE,∴△EAF≌△EBC,∴∠AEF=∠BEC,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE,∴△ECF是等邊三角形,故③正確;在等邊三角形ABE中,∵等邊三角形頂角平分線、底邊上的中線、高和垂直平分線是同一條線段∴如果CG⊥AE,則G是AE的中點(diǎn),∠ABG=30°,∠ABC=150°,題目缺少這個條件,CG⊥AE不能求證,故④錯誤.故選B.點(diǎn)評:本題考查了全等三角形的判定、等邊三角形的判定和性質(zhì)、平行四邊形的性質(zhì)等知識,綜合性強(qiáng).考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識的能力.二.填空題(共10小題)13.(2014?安徽)如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是①②④.(把所有正確結(jié)論的序號都填在橫線上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);直角三角形斜邊上的中線.專題:幾何圖形問題;壓軸題.分析:分別利用平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì)得出△AEF≌△DMF(ASA),得出對應(yīng)線段之間關(guān)系進(jìn)而得出答案.解答:解:①∵F是AD的中點(diǎn),∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此選項(xiàng)正確;延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點(diǎn),∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF錯誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此選項(xiàng)正確.故答案為:①②④.點(diǎn)評:此題主要考查了平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì)等知識,得出△AEF≌△DMF是解題關(guān)鍵.14.(2014?福州)如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),延長BC到點(diǎn)F,使CF=BC.若AB=10,則EF的長是5.考點(diǎn):平行四邊形的判定與性質(zhì);直角三角形斜邊上的中線;三角形中位線定理.專題:壓軸題.分析:根據(jù)三角形中位線的性質(zhì),可得DE與BC的關(guān)系,根據(jù)平行四邊形的判定與性質(zhì),可得DC與EF的關(guān)系,根據(jù)直角三角形的性質(zhì),可得DC與AB的關(guān)系,可得答案.解答:解:如圖,連接DC.DE是△ABC的中位線,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四邊形,∴EF=DC.∵DC是Rt△ABC斜邊上的中線,∴DC==5,∴EF=DC=5,故答案為:5.點(diǎn)評:本題考查了平行四邊形的判定與性質(zhì),利用了平行四邊形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半.15.(2014?江漢區(qū)二模)如圖,在四邊形ABCD中,E、F分別是AB、AD的中點(diǎn),若EF=2,BC=5,CD=3,則tanC=.考點(diǎn):三角形中位線定理;勾股定理的逆定理;銳角三角函數(shù)的定義.專題:壓軸題.分析:根據(jù)中位線的性質(zhì)得出EF∥BD,且等于BD,進(jìn)而得出△BDC是直角三角形,求出即可.解答:解:連接BD,∵E、F分別是AB、AD的中點(diǎn),∴EF∥BD,且等于BD,∴BD=4,∵BD=4,BC=5,CD=3,∴△BDC是直角三角形,∴tanC==,故答案為:點(diǎn)評:此題主要考查了銳角三角形的定義以及三角形中位線的性質(zhì)以及勾股定理逆定理,根據(jù)已知得出△BDC是直角三角形是解題關(guān)鍵.16.(2013?濱州)在?ABCD中,點(diǎn)O是對角線AC、BD的交點(diǎn),點(diǎn)E是邊CD的中點(diǎn),且AB=6,BC=10,則OE=5.考點(diǎn):三角形中位線定理;平行四邊形的性質(zhì).專題:壓軸題.分析:先畫出圖形,根據(jù)平行線的性質(zhì),結(jié)合點(diǎn)E是邊CD的中點(diǎn),可判斷OE是△DBC的中位線,繼而可得出OE的長度.解答:解:∵四邊形ABCD是平行四變形,∴點(diǎn)O是BD中點(diǎn),∵點(diǎn)E是邊CD的中點(diǎn),∴OE是△DBC的中位線,∴OE=BC=5.故答案為:5.點(diǎn)評:本題考查了平行四邊形的性質(zhì)及中位線定理的知識,解答本題的關(guān)鍵是根據(jù)平行四邊形的性質(zhì)判斷出點(diǎn)O是BD中點(diǎn),得出OE是△DBC的中位線.17.(2013?鞍山)如圖,D是△ABC內(nèi)一點(diǎn),BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分別是AB、AC、CD、BD的中點(diǎn),則四邊形EFGH的周長是11.考點(diǎn):三角形中位線定理;勾股定理.專題:壓軸題.分析:利用勾股定理列式求出BC的長,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出EH=FG=AD,EF=GH=BC,然后代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分別是AB、AC、CD、BD的中點(diǎn),∴EH=FG=AD,EF=GH=BC,∴四邊形EFGH的周長=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四邊形EFGH的周長=6+5=11.故答案為:11.點(diǎn)評:本題考查了三角形的中位線定理,勾股定理的應(yīng)用,熟記三角形的中位線平行于第三邊并且等于第三邊的一半是解題的關(guān)鍵.18.(2013?烏魯木齊)如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=5,AC=2,則DF的長為.考點(diǎn):三角形中位線定理;等腰三角形的判定與性質(zhì).專題:壓軸題.分析:延長CF交AB于點(diǎn)G,證明△AFG≌△AFC,從而可得△ACG是等腰三角形,GF=FC,點(diǎn)F是CG中點(diǎn),判斷出DF是△CBG的中位線,繼而可得出答案.解答:解:延長CF交AB于點(diǎn)G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵點(diǎn)D是BC中點(diǎn),∴DF是△CBG的中位線,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案為:.點(diǎn)評:本題考查了三角形的中位線定理,解答本題的關(guān)鍵是作出輔助線,同學(xué)們要注意培養(yǎng)自己的敏感性,一般出現(xiàn)即是角平分線又是高的情況,我們就需要尋找等腰三角形.19.(2013?荊州)如圖,△ACE是以?ABCD的對角線AC為邊的等邊三角形,點(diǎn)C與點(diǎn)E關(guān)于x軸對稱.若E點(diǎn)的坐標(biāo)是(7,﹣3),則D點(diǎn)的坐標(biāo)是(5,0).考點(diǎn):平行四邊形的性質(zhì);坐標(biāo)與圖形性質(zhì);等邊三角形的性質(zhì).專題:壓軸題.分析:設(shè)CE和x軸交于H,由對稱性可知CE=6,再根據(jù)等邊三角形的性質(zhì)可知AC=CE=6,根據(jù)勾股定理即可求出AH的長,進(jìn)而求出AO和DH的長,所以O(shè)D可求,又因?yàn)镈在x軸上,縱坐標(biāo)為0,問題得解.解答:解:∵點(diǎn)C與點(diǎn)E關(guān)于x軸對稱,E點(diǎn)的坐標(biāo)是(7,﹣3),∴C的坐標(biāo)為(7,3),∴CH=3,CE=6,∵△ACE是以?ABCD的對角線AC為邊的等邊三角形,∴AC=6,∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D點(diǎn)的坐標(biāo)是(5,0),故答案為(5,0).點(diǎn)評:本題考查了平行四邊形的性質(zhì)、等邊三角形的性質(zhì)、點(diǎn)關(guān)于x軸對稱的特點(diǎn)以及勾股定理的運(yùn)用.20.(2013?寧波自主招生)如圖,E、F分別是?ABCD的邊AB、CD上的點(diǎn),AF與DE相交于點(diǎn)P,BF與CE相交于點(diǎn)Q,若S△APD=10cm2,S△BQC=20cm2,則陰影部分的面積為30cm2.考點(diǎn):平行四邊形的性質(zhì);相似三角形的判定與性質(zhì).專題:壓軸題.分析:連接E、F兩點(diǎn),由三角形的面積公式我們可以推出S△EFC=S△BCQ,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出陰影部分的面積就是S△APD+S△BQC.解答:解:連接E、F兩點(diǎn),∵四邊形ABCD是平行四邊形,∴AB∥CD,∴△EFC的FC邊上的高與△BCF的FC邊上的高相等,∴S△EFC=S△BCF,∴S△EFQ=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=10cm2,S△BQC=20cm2,∴S四邊形EPFQ=30cm2,故陰影部分的面積為30cm2.點(diǎn)評:本題主要考查平行四邊形的性質(zhì),三角形的面積,解題的關(guān)鍵在于求出各三角形之間的面積關(guān)系.21.(2013?南崗區(qū)校級一模)如圖,AD、BE為△ABC的中線交于點(diǎn)O,∠AOE=60°,OD=,OE=,則AB=7.考點(diǎn):三角形中位線定理;含30度角的直角三角形;勾股定理.專題:壓軸題.分析:過點(diǎn)E作EF⊥AD于F,連接DE,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出OF,再利用勾股定理列式求出EF,然后求出DF,再利用勾股定理列式求出DE,然后根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半解答.解答:解:如圖,過點(diǎn)E作EF⊥AD于F,連接DE,∵∠AOE=60°,∴∠OEF=90°﹣60°=30°,∵OE=,∴OF=OE=×=,在Rt△OEF中,EF===,∵OD=,∴DF=OD+OF=+=,在Rt△DEF中,DE===,∵AD、BE為△ABC的中線,∴DE是△ABC的中位線,∴AB=2DE=2×=7.故答案為:7.點(diǎn)評:本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,直角三角形30°角所對的直角邊等于斜邊的一半,以及勾股定理的應(yīng)用,作輔助線構(gòu)造出兩個直角三角形是解題的關(guān)鍵,也是本題的難點(diǎn).22.(2013?灌云縣模擬)在四邊形ABCD中,對角線AC⊥BD且AC=6、BD=8,E、F分別是邊AB、CD的中點(diǎn),則EF=5.考點(diǎn):三角形中位線定理;勾股定理.專題:壓軸題.分析:取BC的中點(diǎn)G,連接EG、FG,根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出EG、FG,并求出EG⊥FG,然后利用勾股定理列式計(jì)算即可得解.解答:解:如圖,取BC的中點(diǎn)G,連接EG、FG,∵E、F分別是邊AB、CD的中點(diǎn),∴EG∥AC且EG=AC=×6=3,F(xiàn)G∥BD且FG=BD=×8=4,∵AC⊥BD,∴EG⊥FG,∴EF===5.故答案為:5.點(diǎn)評:本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,勾股定理的應(yīng)用,作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.三.解答題(共8小題)23.(2013?常德)已知兩個共一個頂點(diǎn)的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點(diǎn),連接MB、ME.(1)如圖1,當(dāng)CB與CE在同一直線上時(shí),求證:MB∥CF;(2)如圖1,若CB=a,CE=2a,求BM,ME的長;(3)如圖2,當(dāng)∠BCE=45°時(shí),求證:BM=ME.考點(diǎn):三角形中位線定理;全等三角形的判定與性質(zhì);等腰直角三角形.專題:壓軸題.分析:(1)證法一:如答圖1a所示,延長AB交CF于點(diǎn)D,證明BM為△ADF的中位線即可;證法二:如答圖1b所示,延長BM交EF于D,根據(jù)在同一平面內(nèi),垂直于同一直線的兩直線互相平行可得AB∥EF,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠BAM=∠DFM,根據(jù)中點(diǎn)定義可得AM=MF,然后利用“角邊角”證明△ABM和△FDM全等,再根據(jù)全等三角形對應(yīng)邊相等可得AB=DF,然后求出BE=DE,從而得到△BDE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出∠EBM=45°,從而得到∠EBM=∠ECF,再根據(jù)同位角相等,兩直線平行證明MB∥CF即可,(2)解法一:如答圖2a所示,作輔助線,推出BM、ME是兩條中位線;解法二:先求出BE的長,再根據(jù)全等三角形對應(yīng)邊相等可得BM=DM,根據(jù)等腰三角形三線合一的性質(zhì)可得EM⊥BD,求出△BEM是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求解即可;(3)證法一:如答圖3a所示,作輔助線,推出BM、ME是兩條中位線:BM=DF,ME=AG;然后證明△ACG≌△DCF,得到DF=AG,從而證明BM=ME;證法二:如答圖3b所示,延長BM交CF于D,連接BE、DE,利用同旁內(nèi)角互補(bǔ),兩直線平行求出AB∥CF,再根據(jù)兩直線平行,內(nèi)錯角相等求出∠BAM=∠DFM,根據(jù)中點(diǎn)定義可得AM=MF,然后利用“角邊角”證明△ABM和△FDM全等,再根據(jù)全等三角形對應(yīng)邊相等可得AB=DF,BM=DM,再根據(jù)“邊角邊”證明△BCE和△DFE全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=DE,全等三角形對應(yīng)角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根據(jù)等腰直角三角形的性質(zhì)證明即可.解答:(1)證法一:如答圖1a,延長AB交CF于點(diǎn)D,則易知△ABC與△BCD均為等腰直角三角形,∴AB=BC=BD,∴點(diǎn)B為線段AD的中點(diǎn),又∵點(diǎn)M為線段AF的中點(diǎn),∴BM為△ADF的中位線,∴BM∥CF.證法二:如答圖1b,延長BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M(jìn)是AF的中點(diǎn),∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答圖2a所示,延長AB交CF于點(diǎn)D,則易知△BCD與△ABC為等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴點(diǎn)B為AD中點(diǎn),又點(diǎn)M為AF中點(diǎn),∴BM=DF.分別延長FE與CA交于點(diǎn)G,則易知△CEF與△CEG均為等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴點(diǎn)E為FG中點(diǎn),又點(diǎn)M為AF中點(diǎn),∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答圖1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)證法一:如答圖3a,延長AB交CE于點(diǎn)D,連接DF,則易知△ABC與△BCD均為等腰直角三角形,∴AB=BC=BD,AC=CD,∴點(diǎn)B為AD中點(diǎn),又點(diǎn)M為AF中點(diǎn),∴BM=DF.延長FE與CB交于點(diǎn)G,連接AG,則易知△CEF與△CEG均為等腰直角三角形,∴CE=EF=EG,CF=CG,∴點(diǎn)E為FG中點(diǎn),又點(diǎn)M為AF中點(diǎn),∴ME=AG.在△ACG與△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.證法二:如答圖3b,延長BM交CF于D,連接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M(jìn)是AF的中點(diǎn),∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.點(diǎn)評:本題考查了三角形中位線定理、全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出中位線、全等三角形和等腰直角三角形是解題的關(guān)鍵,也是本題的難點(diǎn).24.(2013?南充)如圖,在平行四邊形ABCD中,對角線AC,BD交于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.求證:OE=OF.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì).專題:證明題;壓軸題.分析:由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,又由∠AOE=∠COF,易證得△OAE≌△OCF,則可得OE=OF.解答:證明:∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥CD,∴∠OAE=∠OCF,∵在△OAE和△OCF中,,∴△OAE≌△OCF(ASA),∴OE=OF.點(diǎn)評:此題考查了平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.25.(2013?新疆)如圖,?ABCD中,點(diǎn)O是AC與BD的交點(diǎn),過點(diǎn)O的直線與BA、DC的延長線分別交于點(diǎn)E、F.(1)求證:△AOE≌△COF;(2)請連接EC、AF,則EF與AC滿足什么條件時(shí),四邊形AECF是矩形,并說明理由.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);矩形的判定.專題:壓軸題.分析:(1)根據(jù)平行四邊形的性質(zhì)和全等三角形的證明方法證明即可;(2)請連接EC、AF,則EF與AC滿足EF=AC時(shí),四邊形AECF是矩形,首先證明四邊形AECF是平行四邊形,再根據(jù)對角線相等的平行四邊形為矩形即可證明.解答:(1)證明:∵四邊形ABCD是平行四邊形,∴AO=OC,AB∥CD.∴∠E=∠F.∵在△AOE與△COF中,,∴△AOE≌△COF(AAS);(2)連接EC、AF,則EF與AC滿足EF=AC時(shí),四邊形AECF是矩形,理由如下:由(1)可知△AOE≌△COF,∴OE=OF,∵AO=CO,∴四邊形AECF是平行四邊形,∵EF=AC,∴四邊形AECF是矩形.點(diǎn)評:本題主要考查了全等三角形的性質(zhì)與判定、平行四邊形的性質(zhì)以及矩形的判定,首先利用平行四邊形的性質(zhì)構(gòu)造全等條件,然后利用全等三角形的性質(zhì)解決問題26.(2013?重慶)已知,如圖,在?ABCD中,AE⊥BC,垂足為E,CE=CD,點(diǎn)F為CE的中點(diǎn),點(diǎn)G為CD上的一點(diǎn),連接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的長;(2)求證:∠CEG=∠AGE.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);直角三角形斜邊上的中線;勾股定理.專題:壓軸題.分析:(1)求出DC=CE=2CF=4,求出AB,根據(jù)勾股定理求出BE即可;(2)過G作GM⊥AE于M,證△DCF≌△ECG,推出CG=CF,求出M為AE中點(diǎn),得出等腰三角形AGE,根據(jù)性質(zhì)得出GM是∠AGE的角平分線,即可得出答案.解答:(1)解:∵CE=CD,點(diǎn)F為CE的中點(diǎn),CF=2,∴DC=CE=2CF=4,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∵AE⊥BC,∴∠AEB=90°,在Rt△ABE中,由勾股定理得:BE==;(2)證明:過G作GM⊥AE于M,∵AE⊥BE,GM⊥AE,∴GM∥BC∥AD,∵在△DCF和△ECG中,,∴△DCF≌△ECG(AAS),∴CG=CF,CE=CD,∵CE=2CF,∴CD=2CG,即G為CD中點(diǎn),∵AD∥GM∥BC,∴M為AE中點(diǎn),∴AM=EM(一組平行線在一條直線上截得的線段相等,那么在另一條直線上截得的線段也相等),∵GM⊥AE,∴AG=EG,∴∠AGM=∠EGM,∴∠AGE=2∠MGE,∵GM∥BC,∴∠EGM=∠CEG,∴∠CEG=∠AGE.點(diǎn)評:本題考查了平行四邊形性質(zhì),等腰三角形的性質(zhì)和判定,平行線分線段成比例定理,全等三角形的性質(zhì)和判定,勾股定理等知識點(diǎn)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用定理進(jìn)行推理的能力.27.(2013?郴州)如圖,已知BE∥DF,∠ADF=∠CBE,AF=CE,求證:四邊形DEBF是平行四邊形.考點(diǎn):平行四邊形的判定;全等三角形的判定與性質(zhì).專題:證明題;壓軸題.分析:首先根據(jù)平行線的性質(zhì)可得∠BEC=∠DFA,再加上條件∠ADF=∠CBE,AF=CE,可證明△ADF≌△CBE,再根據(jù)全等三角形的性質(zhì)可得BE=DF,根據(jù)一組對邊平行且相等的四邊形是平行四邊形進(jìn)行判定即可.解答:證明:∵BE∥DF,∴∠BEC=∠DFA,在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴BE=DF,又∵BE∥DF,∴四邊形DEBF是平行四邊形.點(diǎn)評:此題主要考查了平行四邊形的判定,關(guān)鍵是掌握一組對邊平行且相等的四邊形是平行四邊形.28.(2013?沙坪壩區(qū)模擬)如圖,?ABCD中,AC與BD相交于點(diǎn)O,∠ABD=2∠DBC,AE⊥BD于點(diǎn)E.(1)若∠ADB=25°,求∠BAE的度數(shù);(2)求證:AB=2OE.考點(diǎn):平行四邊形的性質(zhì);直角三角形斜邊上的中線;三角形中位線定理.專題:壓軸題.分析:(1)根據(jù)平行四邊形的對邊平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠DBC=∠ADB,然后求出∠ABD,再根據(jù)直角三角形兩銳角互余
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 知到智慧樹網(wǎng)課《中國傳統(tǒng)文化專題選講》章節(jié)測試滿分答案
- 2024版專用:加氣站CNG運(yùn)輸安全合同3篇
- 2024版物保擔(dān)保合同范本
- 2024正規(guī)軌道交通設(shè)備轉(zhuǎn)讓及維修服務(wù)協(xié)議書3篇
- 2025年度股權(quán)投資與經(jīng)營權(quán)轉(zhuǎn)讓合同3篇
- 2024銅門制安工程知識產(chǎn)權(quán)保護(hù)合同
- 2025年度消防安全應(yīng)急物資儲備與配送消防勞務(wù)合同集錦3篇
- 2024年貨物運(yùn)輸協(xié)議條款集錦版
- 2025年度私人二手商鋪買賣合同模板(含裝修移交)3篇
- 2024年飯店業(yè)務(wù)運(yùn)營權(quán)承包合同書版B版
- 高等激光技術(shù)1
- GB/T 25786-20102-氨基-4-乙酰氨基苯甲醚
- 土地勘測定界技術(shù)方案
- DB37-T 5026-2022《居住建筑節(jié)能設(shè)計(jì)標(biāo)準(zhǔn)》
- ISO27001信息安全管理體系文件+表單
- 初級咖啡師資格考核試題與答案
- 金華-經(jīng)濟(jì)技術(shù)開發(fā)區(qū)-山嘴頭 未來社區(qū)實(shí)施方案
- 國家義務(wù)教育質(zhì)量監(jiān)測結(jié)果應(yīng)用教學(xué)研討
- 燃料油需求專題(二):航線與運(yùn)費(fèi)
- 2019年同等學(xué)力(教育學(xué))真題精選
- 【框架完整】快樂卡通風(fēng)十歲成長禮紀(jì)念相冊PPT模板(PPT 24頁)
評論
0/150
提交評論