




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.下列指數(shù)式與對數(shù)式互化不正確的一組是()A.與 B.與C.與 D.與2.第24屆冬季奧林匹克運動會,將于2022年2月4日~2月20日在北京和張家口聯(lián)合舉行.為了更好地安排志愿者工作,現(xiàn)需要了解每個志愿者掌握的外語情況,已知志愿者小明只會德、法、日、英四門外語中的一門.甲說,小明不會法語,也不會日語:乙說,小明會英語或法語;丙說,小明會德語.已知三人中只有一人說對了,由此可推斷小明掌握的外語是()A.德語 B.法語C.日語 D.英語3.已知函數(shù),對于任意,且,均存在唯一實數(shù),使得,且,若關(guān)于的方程有4個不相等的實數(shù)根,則的取值范圍是A. B.C. D.4.下列命題中,真命題是.A.xR,x2+1=x B.xR,x2+1<2xC.xR,x2+1>x D.xR,x2+2x>15.中國5G技術(shù)領(lǐng)先世界,5G技術(shù)的數(shù)學原理之一便是著名的香農(nóng)公式:.它表示:在受噪聲干擾的信道中,最大信息傳遞速度C取決于信道帶寬W,信道內(nèi)信號的平均功率S,信道內(nèi)部的高斯噪聲功率N的大小,其中叫做信噪比.當信噪比較大時,公式中真數(shù)中的1可以忽略不計.按照香農(nóng)公式,若不改變帶寬W,而將信噪比從1000提升至8000,則C大約增加了()()A.10% B.30%C.60% D.90%6.若點在角的終邊上,則()A. B.C. D.7.定義在上的函數(shù),當時,,若,則、、的大小關(guān)系為()A. B.C. D.8.函數(shù)是偶函數(shù)且在上單調(diào)遞減,,則的解集為()A. B.C D.9.已知集合0,,1,,則A. B.1,C.0,1, D.10.已知全集U=R,則正確表示集合M={0,1}和N={x|x2+x=0}關(guān)系的韋恩(Venn)圖是()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知正實數(shù)x,y滿足,則的最小值為______12.在區(qū)間上隨機取一個實數(shù),則事件發(fā)生的概率為_________.13.定義在上的函數(shù)滿足則________.14.若關(guān)于的不等式的解集為,則實數(shù)__________15.在平面直角坐標系中,以軸為始邊作兩個銳角,,它們的終邊分別與單位圓相交于,兩點,,的縱坐標分別為,.則的終邊與單位圓交點的縱坐標為_____________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.在①是函數(shù)圖象的一條對稱軸,②函數(shù)的最大值為2,③函數(shù)圖象與y軸交點的縱坐標是1這三個條件中選取兩個補充在下面題目中,并解答已知函數(shù),______(1)求的解析式;(2)求在上的值域17.在平面直角坐標系xOy中,角α與角β均以Ox為始邊,它們的終邊關(guān)于y軸對稱.若,則=___________.18.已知,Ⅰ求的值;Ⅱ求的值;Ⅲ若且,求的值19.已知函數(shù)的圖象過點,且滿足(1)求函數(shù)的解析式:(2)求函數(shù)在上最小值;(3)若滿足,則稱為函數(shù)的不動點,函數(shù)有兩個不相等且正的不動點,求t的取值范圍20.已知函數(shù)部分圖象如圖所示.(1)當時,求的最值;(2)設,若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.21.已知函數(shù)為定義在上的奇函數(shù).(1)求的值域;(2)解不等式:
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】根據(jù)指數(shù)式與對數(shù)式的互化關(guān)系逐一判斷即可.【詳解】,故正確;,故正確;,,故不正確;,故正確故選:C【點睛】本題主要考查了指數(shù)式與對數(shù)式的互化,屬于基礎(chǔ)題.2、B【解析】根據(jù)題意,分“甲說對,乙、丙說錯”、“乙說對,甲、丙說錯”、“丙說對,甲、乙說錯”三種情況進行分析,即可得到結(jié)果.【詳解】若甲說對,乙、丙說錯:甲說對,小明不會法語也不會日語;乙說錯,則小明不會英語也不會法語;丙說錯,則小明不會德語,由此可知,小明四門外語都不會,不符合題意;若乙說對,甲、丙說錯:乙說對,則小明會英活或法語;甲說錯,則小明會法語或日語;丙說錯,小明不會德語;則小明會法語;若丙說對,甲、乙說錯:丙說對,則小明會德語;甲說錯,到小明會法語或日語;乙說錯,則小明不會英語也不會法語;則小明會德語或日語,不符合題意;綜上,小明會法語.故選:B.3、A【解析】解:由題意可知f(x)在[0,+∞)上單調(diào)遞增,值域為[m,+∞),∵對于任意s∈R,且s≠0,均存在唯一實數(shù)t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是減函數(shù),值域為(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4個不相等的實數(shù)根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴則a的取值范圍是(﹣4,﹣2),故選A點睛:本題中涉及根據(jù)函數(shù)零點求參數(shù)取值,是高考經(jīng)常涉及的重點問題,(1)利用零點存在的判定定理構(gòu)建不等式求解;(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解,如果涉及由幾個零點時,還需考慮函數(shù)的圖象與參數(shù)的交點個數(shù);(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.4、C【解析】根據(jù)全稱命題和特稱命題的含義,以及不等式性質(zhì)的應用,即可求解.【詳解】對于A中,,所以,所以不正確;對于B中,,所以,所以不正確;對于C中,,所以,所以正確;對于D中,,所以不正確,故選C.【點睛】本題主要考查了全稱命題與特稱命題的真假判定,其中解答中正確理解全稱命題和特稱命題的含義,以及不等式性質(zhì)的應用是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、B【解析】根據(jù)所給公式、及對數(shù)的運算法則代入計算可得;【詳解】解:當時,,當時,,∴,∴約增加了30%.故選:B6、A【解析】利用三角函數(shù)的定義可求得結(jié)果.【詳解】由三角函數(shù)定義可得.故選:A.7、C【解析】令,求得,得到是奇函數(shù),再令,證得在上遞減判斷.【詳解】因為,令,得,解得,令,得,所以是奇函數(shù),因時,,則,,令,則,,且,則,,所以,即,即,所以在上遞減,,因為,所以,故選:C8、D【解析】分析可知函數(shù)在上為增函數(shù),且有,將所求不等式變形為,可得出關(guān)于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為函數(shù)是偶函數(shù)且在上單調(diào)遞減,則該函數(shù)在上為增函數(shù),且,由可得,所以,,可得或,解得或.因此,不等式的解集為.故選:D.9、A【解析】直接利用交集的運算法則化簡求解即可【詳解】集合,,則,故選A【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關(guān)系時,關(guān)鍵是將兩集合的關(guān)系轉(zhuǎn)化為元素間的關(guān)系,本題實質(zhì)求滿足屬于集合且屬于集合的元素的集合.10、A【解析】根據(jù)題意解得集合,再根據(jù)集合的關(guān)系確定對應的韋恩圖.【詳解】解:由題意,集合N={x|x2+x=0}={-1,0},∴,故選:A【點睛】本題考查了集合之間的關(guān)系,韋恩圖的表示,屬于基礎(chǔ)題.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】令,轉(zhuǎn)化條件為方程有解,運算可得【詳解】令,則,化簡得,所以,解得或(舍去),當時,,符合題意,所以得最小值為.故答案為:.12、【解析】由得:,∵在區(qū)間上隨機取實數(shù),每個數(shù)被取到的可能性相等,∴事件發(fā)生的概率為,故答案為考點:幾何概型13、【解析】表示周期為3的函數(shù),故,故可以得出結(jié)果【詳解】解:表示周期為3的函數(shù),【點睛】本題考查了函數(shù)的周期性,解題的關(guān)鍵是要能根據(jù)函數(shù)周期性的定義得出函數(shù)的周期,從而進行解題14、【解析】先由不等式的解得到對應方程的根,再利用韋達定理,結(jié)合解得參數(shù)a即可.【詳解】關(guān)于的不等式的解集為,則方程的兩根為,則,則由,得,即,故.故答案為:.15、【解析】根據(jù)任意角三角函數(shù)的定義可得,,,,再由展開求解即可.【詳解】以軸為始邊作兩個銳角,,它們的終邊分別與單位圓相交于,兩點,,的縱坐標分別為,所以,是銳角,可得,因為銳角的終邊與單位圓相交于Q點,且縱坐標為,所以,是銳角,可得,所以,所以的終邊與單位圓交點的縱坐標為.故答案為:.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)條件選擇見解析,;(2).【解析】(1)選擇①②直接求出A及的解;選擇①③,先求出,再由求A作答;選擇②③,直接可得A,再由求作答.(2)由(1)結(jié)合正弦函數(shù)的性質(zhì)即可求得在上的值域.【小問1詳解】選擇①②,,由及得:,所以的解析式是:.選擇①③,由及得:,即,而,則,即,解得,所以的解析式是:.選擇②③,,而,即,又,則有,所以的解析式是:.【小問2詳解】由(1)知,,當時,,則當,即時,,當,即時,,所以函數(shù)在上的值域是.17、【解析】因為和關(guān)于軸對稱,所以,那么,(或),所以.【考點】同角三角函數(shù),誘導公式,兩角差余弦公式【名師點睛】本題考查了角的對稱關(guān)系,以及誘導公式,常用的一些對稱關(guān)系包含:若與的終邊關(guān)于軸對稱,則,若與的終邊關(guān)于軸對稱,則,若與的終邊關(guān)于原點對稱,則.18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】Ⅰ根據(jù)同角的三角函數(shù)的關(guān)系即可求出;Ⅱ根據(jù)二倍角的正弦公式、二倍角的余弦公式以及兩角差的余弦公式即可求出;Ⅲ由,根據(jù)同角的三角函數(shù)的關(guān)系結(jié)合兩角差的正弦公式即可求出【詳解】Ⅰ,,,.Ⅱ,.Ⅲ,,,,,.【點睛】三角函數(shù)求值有三類,(1)“給角求值”;(2)“給值求值”:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題關(guān)鍵在于“變角”,使其角相同或具有某種關(guān)系.(3)“給值求角”:實質(zhì)是轉(zhuǎn)化為“給值求值”,先求角的某一函數(shù)值,再求角的范圍,確定角19、(1);(2);(3).【解析】(1)根據(jù)f(x)圖像過點,且滿足列出關(guān)于m和n的方程組即可求解;(2)討論對稱軸與區(qū)間的位置關(guān)系,即可求二次函數(shù)的最小值;(3)由題可知方程x=g(x)有兩個正根,根據(jù)韋達定理即可求出t范圍.【小問1詳解】∵的圖象過點,∴①又,∴②由①②解,,∴;【小問2詳解】,,當,即時,函數(shù)在上單調(diào)遞減,∴;當,即時,函數(shù)在上單調(diào)遞減,在單調(diào)遞增,∴;當時,函數(shù)在上單調(diào)遞增,∴綜上,【小問3詳解】設有兩個不相等的不動點、,且,,∴,即方程有兩個不相等的正實根、∴,解得20、(1),;(2)【解析】(1)根據(jù)正弦型圖像的性質(zhì)求出函數(shù)解析式,在根據(jù)求出函數(shù)最值;(2)求出g(x)解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 英語應對能力測試題及答案
- 財務顧問筆試試題及答案
- 2025年專用X射線機合作協(xié)議書
- 八年級物理下冊 8.1 牛頓第一定律教學設計(新版)新人教版
- 2025年機場信息網(wǎng)絡系統(tǒng)項目合作計劃書
- 滯銷房面試試題及答案
- 2025年診斷用品制造合作協(xié)議書
- 高中數(shù)學 第2章 數(shù)列 2.2.2 等差數(shù)列的通項公式教學設計 蘇教版必修5
- 2024九年級英語下冊 Module 2 EducationUnit 1 They don't sit in rows教學設計(新版)外研版
- 視覺傳播設計創(chuàng)意靈感來源與試題及答案
- 2025民法典婚姻家庭編司法解釋二解讀
- 眼視光技術(shù)考試題(含答案)
- 2025年成考思修模擬試題及答案
- 2025年醫(yī)保知識考試題庫及答案(醫(yī)保數(shù)據(jù)安全)試卷
- 2024年安康市旬陽市市直教育單位遴選教師考試真題
- 2025年“世界水日”活動知識競賽考試指導題庫100題(含答案)
- 《煤礦安全生產(chǎn)責任制》培訓課件2025
- 學校安全管理工作總結(jié)
- 活動策劃執(zhí)行合同協(xié)議書
- T-SZSA 030.1-2024 醫(yī)院及醫(yī)療機構(gòu)建筑空間照明技術(shù)規(guī)范 第1部分:總規(guī)范
- 2025年時政題庫及答案(100題)
評論
0/150
提交評論