版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
遙感分類中,精度評價是一個很重要的環(huán)節(jié)?,F(xiàn)在需要計算一下里邊的Kappa系數(shù),但是我手頭上沒有書,只能到網(wǎng)上找,但是在中文世界里,要找這樣的東西何其難也。英文的倒是一大批。在一個軟件的使用手冊里我找到了計算方法,說的非常詳細(xì),連用戶精度,生產(chǎn)者精度,還有我以前沒見過的Hellden以及Short尺度,都說的非常清楚。就是里邊有一點兒小錯誤,不過我已經(jīng)標(biāo)出來了。Evaluatingthtqualityofaclassificationresultiscfhighimportanctinlemcici.sensingjiinct:itJvfevicknerhm,wellrhi:^L:n.cr.]ti:dorU51:dclassifh:「isrupablccxrric-ringthedesiredobjectsfromtheimageComiTionly,asafii5Tevaluation,simplevisualinspectioncanhenxdgevaluartthepLiusibiljtyoftheclassiFicaciimrc^ulo.ichc-lusi.iliisisjustaiuliicctivciiiuiliod;L[]dihushardlytobequimtiHcdur。匕ncipuhkofbci]]^expttSSfidliiCDiiipai'abIcxiilucs.Motedvc]',ith[ItieisatytnubtaiiiiiifoiJiutionahoiirrhec1as>;iFicati^nstabilityandbowcapahluchuclassesarctoextruerriledchiicdititoniiaiioi].Besidedieclasiicjl[iicdiochoficcurjcvassesstiiuiit,ipLcialmc-thochbasfdnpniitiizzycoiicepis±;l口beiisucl.CommonaccuracymeasuresInvtomc^siLri:thequality門FnrhssitiL-1'門ndtc>cornpareandcvalunn-.rl.issitica-tionswithrespectri)rhi:irsnitabiliryfinspecificapplications^jccmacymcjAiircsarellh:c{.Musrlyrlu:y;^ri:derivedonrheqF;iciimpji-iwnofdierla'isifirarioninqui:s-licjiwithanotherclassification.ThisIarterclassificaiionisoften11braincdwithdifKrtiitmethods,c心5byoii-sllc*sundmeasurLEiicms,acidLconsidcicdilILiMlLindtrue,whichi$vdiy備TTii:tim「srluntmground「Tilth"kused,7k:willhiR:\i^cth「n:rm"■leftluna:cla.^ificatii>n,:tuempha^iztcharit很essentiallyalsoaelassi甘匚汨nn,the1tlia-bilitv口「wlikli beassLii-cclaridcaciiioibeLu.kcJigraniucl.SpcciJcatee,.、tobetaltcnifthereferencecla&5)Acatkinisobiahicdwithdatatakenatadiffertntrimerhant,grhedataforrheclass'ificacHinsheevaliiarud.M;)r<iiv<.i,itmu5rht:assuredthatrhereferenceclassificationanddieclaisifieationinquestioncarryeomparatlcinformation.[Illsnkan%llultheyhnvelliesaniuc]:l抬c*oratIullMdissesc:niheassignedtoeachotherVclassesbymergingsandchattheybothhavethesam*苧id,ix.hapcakiJigindigitalterms,thatthepixelshavetheaamelocationandspatialextenton[hi:grumic].In[hi:m:l]llcI'we[;i1yl:;j11tliisft)fgi:iritrc](a^Miiniiiglli^ri\ih:l'cs?(:3rvsorin:piri:-pi-iiccisin<;climsiFinirii-jnandrcfx-ivn^:rl.^'iihcnriiinwaspctk門,乜)z.jissij-mtespeciallythatbothclassificationandreferenceclassificationassignthesameclassesin.]crispwayri.e,,that.]pixelisassignedttiexactlytintcl;iss.Andwe%hdlissunitrhiitrliL:]?ixi:lsuhrbci\:R:ri:nrcckissific;irion;nv;iftuhsetofthott:attheclnssihmrion.Zecajlikctiderive;lso-calledconfusioiLidbkbycuuntingIkwmanyofdiepixcliclassifiedis廣后$<inrhi-L-|;issificnrir?narcijfclass+inthe dassihcnri^Ti.V<?denotcihhnumberby%andwriteitinrowiandcolumn4ofthetable.]hi%tiiblc.st^iiictijnes『匚仁門七&lucanfHsi&nnmtrbcorcnorutiit.yix,containsallihuinfiiiniacrmahcutthereh;ionbetwetnclassificationandrt.fcrtnceclassifjcatuMi.However,itis<ifiuiusufultr.iderivetroEiiitSoelkcliaraclLTislicJilleuIiltswhiclisimplifyihuaccuracyassL^hJiictLLnfthecliissit'LcaiLGE]iKInngalt凸u,]991j.ReferenceclassificationClassificationClass1Class2ClassNClass1a11a12a1N2L外Class2a21a22a2NEL%--?-??-------??ClassNaN1aN2aNNEE2K2L%訃卬AfirstsuchnumberisoverallaccuracyOA.Itistheproportionofallreferencepixelswhichareclassifiedcorrectly(inthesensethattheclassassignmentoftheclassificationandofthereferenceclassificationagree).Itcanbecomputedfromtheconfusiontabicwherenisthenumberofallreferencepixels.SoOAisthesumofthediagonalentriesoftheconfusiontabledividedbythenumberofallreferencepixels.Overallaccuracyisavciycoarsemeasure.Irgivesnoinformationaboutwharclassesarcclassifiedwithgoodaccuracy.Infact,aclassificarionwithpooroverallaccuracymayfindonecertainclasswithhighaccuracy,althoughitconfusesallothers,andthusbeofinterestforcertainapplications.Thereforetochermeasuresareuseful.Onesuchmeasure,prod“cer'$acamicyZM卜Zarsj,estimatestheprobabilitythatapixelwhichisofclassiinthereferenceclassificationiscorrectlyclassified.Itisthusforeachitheproportionofpixelswhereclassificationandreferenceclassificationagreeinclassiandthereferencepixelsarcclassifiedasthisclass.Asthetotalnumberofthepixelsofclassiinthereferenceclassificationisobtainedasthesumofcolumniintheconfusiontable,wehaveProducersaccuracyi$actuallyameasurefortheproducerofaclassification,whichtellshimhowwelltheclassificationagreeswiththereferenceclassification.Itgives,howc*vennoinformationabouthowwelltheclassificationpredictsaclass,i.e.,itgivesnoinformationabouttheprobabilitythatapixelclassifiedasclassiisactuallyofclassi.Thisi$theprimaryinterestofauserofaclassificationandanestimateofthisprobabilityisthuscalledusersaccuracyUA(class^.鄧gestimatethisprobabilitybythepropoitionofpixelswhereclassificationandreferenceclassificationagreeinclass/andthenumberofallreferencepixelsclassifiedasclassibytheclassification.Nowthetotalnumberofpixelswhicharcclassifiedasclassiisobtainedbythesumofrow/oftheconfusiontable,sothatwehaveUA(classJ二UA(classJ二LetusgiveasmallexampletoclarifythedifferencesbetweenPAandUA.Considerthefollowingconfusiontable.ReferenceclassificationClassificationClass1Class2ClassNClass1500050Class24010060200ClassN1004050100100100”300Weobtainhereasproducer'saccuracy&)rclass1PA(classx)=5%恒=0.5,meaningthatonly50%oftheclass1pixelsofthereferenceclarificationarefbundbytheclassification.Ontheotherhand,thevalueUA(class})= =L。showsthattheusercanrelycompletelyontheclassificationhere:wheneverapixeli$classifiedtoclass1>thisiscorrect.Thesituationisquitedifferentwhenweconsiderclass2.HerewegetZM(c/as52)= i.c.>theclassificationclassifiesallclass2pixelsofthereferenceclassificationcorrectly.Butthistime,asUA(class2)= =0.5,theusercanbeonly50%surethatapixelclassifiedasclass2isinfactclass2.Suchapixelisinhalfofalleasesconfusedwithotherclasses.Forclass3wefind(clasX)=,%00=°,andUA(class3)= =0?8,Soalthoughagainproducersaccuracyisquitelow,ausercanrelyonapixelclassifiedasclass3to80%.
Theoverallaccuracyinthisexample,
givesnoinformationtotheproducerOA(50+100+40)/ 063Theoverallaccuracyinthisexample,
givesnoinformationtotheproducerOA(50+100+40)/ 063brafhcrjowIt/DWoruseroftheclassificationastowhichclassesarewelldetected,althoughsomeofthemcanbeofinterestincertainapplications(eg,class1canbeofinterestinthedesignofaclassifierandclasses2and3canbeofinterestintheuseoftheclassification).Inordertocompensateforthedifferentinterestsofusersandproducersofaclassifi-cation,certaincombinationsofproducersandusersaccuracyarcused.AfirstsuchchoiceistheproductPA..UA(class)=PA(class^UA{class^orthejniniHuoriPAaUA(class^=min(P\(classi),UA(classi))ofthetwo.Theygivevaluesclosetooneifbothaccuraciesarchighandareclosetozeroifanyofthetwoislow.Intheexampleabovewegeeforclasses1,2and3respectivelythevaluesfc)rPA?(ZA050.5and0.32,andfbrPAAUAwefind0.5,().5and04OtherpossibilitiesarcthemeasureofHclldcn[3,4]orthemeasureofShort[4,5]HA(class^=F—&whichisthebarmomcmeanHA(cLass)= 1 HA(class^=F—&whichisthebarmomcmeanHA(cLass)= 1 + IPA[classt)UA(class^ofPA(classandUA(class^ic,B4)—叫)?LZA(c/a叫SA(class^=fForShortsmeasurewefina、SA(class^)= PA(c如,)+UA(clasSt)1
(曲叫)?tZA(c/o叫) PA[class+UAfclass^-Ri(class^UA(class^Theinterpretationofthisaccuracymeasureisnotsoeasy.Letusonlymentionthatitisthequotientofthepioductt-norm=a?。andtheassociatedt-conornis(d,/3)=1-f(l-aj-/?)fora=PA(class^and=UA(class).SA(c如s)PA叫)SA(c如s)PA叫)^PAkUA(class)mHA^class-)whichsaysthatinacertainsense,Shortsaccuracymeasureortheproductofproducer'sandusersaccuraciesisthemostpessimistic,andHelldensaccuracymeasureisthemostoptimistic.Theuseofproducersaccuracyorusersaccuracyaloneshouldbetreatedwithcaution,asbothanswercompletelydifferentquestions.Thereisanotheraccuracymeasurewhichhasattainedwiderinterestintheclassificationcommunity,namelyCohen'skappacoefficient[1>4].Itfollows,however,adifferentidea.Whereasoverallaccuracy,OA,checkshowmanyofallpixelsarcclassifiedcorrect-ly>assumingthatthereferenceclassificationistrue,hereitisassumedthatbothclassificationandreferenceclassificationareindependentclassassignmentsofequalreliability;howwelltheyagreeiswhatismeasured.Thebigadvantageofthekappacoefficientoveroverallaccuracyi$thatkappatakeschanceagreementintoaccountandcorrectsforit.Chanceagreementmeansheretheprobabi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 期中模擬檢測卷03(解析版)
- 2025年昌吉職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年新疆科信職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2025科學(xué)儀器行業(yè)技術(shù)發(fā)展與市場前景分析
- 外架工勞務(wù)分包合同范本
- 股東轉(zhuǎn)讓出資合同書
- 2024年旅游項目規(guī)劃設(shè)計合同
- 醫(yī)療儀器行業(yè)發(fā)展趨勢
- 環(huán)境保護與綠色航空發(fā)展
- 營銷推廣服務(wù)合同模板
- 2025年合資經(jīng)營印刷煙包盒行業(yè)深度研究分析報告
- 教育家精神六個方面專題PPT
- 2023年河北廊坊市三河市金創(chuàng)產(chǎn)業(yè)投資有限公司招聘筆試題庫含答案解析
- 醫(yī)學(xué)專題-脛骨高位截骨術(shù)
- 中國減肥行業(yè)市場分析與發(fā)展趨勢講義
- 海通食品集團楊梅汁產(chǎn)品市場營銷
- 人教版高一數(shù)學(xué)上冊期末考試試卷及答案
- 圍術(shù)期下肢深靜脈血栓預(yù)防的術(shù)中護理
- DBJ51-T 151-2020 四川省海綿城市建設(shè)工程評價標(biāo)準(zhǔn)
- GB/T 12996-2012電動輪椅車
- 小象學(xué)院深度學(xué)習(xí)-第7講遞歸神經(jīng)網(wǎng)絡(luò)
評論
0/150
提交評論