版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.的值等于()A. B. C.1 D.2.在平面直角坐標系中,將拋物線向左平移1個單位,再向下平移1個單位后所得拋物線的表達式為()A. B.C. D.3.如圖,在中,.以為直徑作半圓,交于點,交于點,若,則的度數(shù)是()A. B. C. D.4.下列命題錯誤的是()A.經(jīng)過三個點一定可以作圓B.經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心C.同圓或等圓中,相等的圓心角所對的弧相等D.三角形的外心到三角形各頂點的距離相等5.若二次函數(shù)的圖象的頂點在第一象限,且經(jīng)過點(0,1)和(-1,0),則的值的變化范圍是()A. B. C. D.6.下列事件中,不可能事件的是()A.投擲一枚均勻的硬幣10次,正面朝上的次數(shù)為5次B.任意一個五邊形的外角和等于C.從裝滿白球的袋子里摸出紅球D.大年初一會下雨7.已知⊙O的半徑是4,圓心O到直線l的距離d=1.則直線l與⊙O的位置關系是()A.相離 B.相切 C.相交 D.無法判斷8.如圖,點M在某反比例函數(shù)的圖象上,且點M的橫坐標為,若點和在該反比例函數(shù)的圖象上,則與的大小關系為()A. B. C. D.無法確定9.如圖,已知正方形ABCD,將對角線BD繞著點B逆時針旋轉,使點D落在CB的延長線上的D′點處,那么sin∠AD′B的值是()A. B. C. D.10.如圖,在中,已知點在上,點在上,,,下列結論中正確的是()A. B. C. D.二、填空題(每小題3分,共24分)11.sin245°+cos60°=____________.12.某毛絨玩具廠對一批毛絨玩具進行質量抽檢,相關數(shù)據(jù)如下:抽取的毛絨玩具數(shù)2151111211511111115112111優(yōu)等品的頻數(shù)19479118446292113791846優(yōu)等品的頻率1.9511.9411.9111.9211.9241.9211.9191.923從這批玩具中,任意抽取的一個毛絨玩具是優(yōu)等品的概率的估計值是__.(精確到13.△ABC中,∠C=90°,tanA=,則sinA+cosA=_____.14.如圖,平行四邊形ABCD的一邊AB在x軸上,長為5,且∠DAB=60°,反比例函數(shù)y=和y=分別經(jīng)過點C,D,則AD=_____.15.已知二次函數(shù)y=(x﹣2)2﹣3,當x<2時,y隨x的增大而_____(填“增大”或“減小”).16.如圖拋物線與軸交于,兩點,與軸交于點,點是拋物線對稱軸上任意一點,若點、、分別是、、的中點,連接,,則的最小值為_____.17.如圖,直線y=kx與雙曲線y=(x>0)交于點A(1,a),則k=_____.18.如圖,正方形內(nèi)接于,正方形的邊長為,若在這個圓面上隨意拋一粒豆子,則豆子落在正方形內(nèi)的概率是_____________.三、解答題(共66分)19.(10分)如圖1,在中,,.(1)求邊上的高的長;(2)如圖2,點、分別在邊、上,、在邊上,當四邊形是正方形時,求的長.20.(6分)在平面直角坐標系中,已知拋物線.(1)我們把一條拋物線上橫坐標與縱坐標相等的點叫做這條拋物線的“方點”.試求拋物線的“方點”的坐標;(2)如圖,若將該拋物線向左平移1個單位長度,新拋物線與軸相交于、兩點(在左側),與軸相交于點,連接.若點是直線上方拋物線上的一點,求的面積的最大值;(3)第(2)問中平移后的拋物線上是否存在點,使是以為直角邊的直角三角形?若存在,直接寫出所有符合條件的點的坐標;若不存在,說明理由.21.(6分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB.(1)求證:DC為⊙O的切線;(2)若∠DAB=60°,⊙O的半徑為3,求線段CD的長.22.(8分)如圖,在△ABC中,點D在BC上,CD=CA,CF平分∠ACB,AE=EB,求證:EF=BD23.(8分)將△ABC繞點B逆時針旋轉到△A′BC′,使A、B、C′在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,求圖中陰影部分的面積.24.(8分)閱讀下列材料,然后解答問題.經(jīng)過正四邊形(即正方形)各頂點的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內(nèi)接正四邊形.如圖,正方形ABCD內(nèi)接于⊙O,⊙O的面積為S1,正方形ABCD的面積為S1.以圓心O為頂點作∠MON,使∠MON=90°.將∠MON繞點O旋轉,OM、ON分別與⊙O交于點E、F,分別與正方形ABCD的邊交于點G、H.設由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S.(1)當OM經(jīng)過點A時(如圖①),則S、S1、S1之間的關系為:(用含S1、S1的代數(shù)式表示);(1)當OM⊥AB于G時(如圖②),則(1)中的結論仍然成立嗎?請說明理由;(3)當∠MON旋轉到任意位置時(如圖③),則(1)中的結論任然成立嗎:請說明理由.25.(10分)如圖,在中,點、、分別在邊、、上,,,.(1)當時,求的長;(2)設,,那么__________,__________(用向量,表示)26.(10分)某市有A、B、C三個公園,甲、乙兩位同學隨機選擇其中一個公園游玩.(1)甲去A公園游玩的概率是;(2)求甲、乙恰好在同一個公園游玩的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)特殊角的三角函數(shù)值,即可得解.【詳解】.故選:A.【點睛】此題屬于容易題,主要考查特殊角的三角函數(shù)值.失分的原因是沒有掌握特殊角的三角函數(shù)值.2、B【分析】直接關鍵二次函數(shù)的平移規(guī)律“左加右減,上加下減”解答即可.【詳解】將拋物線向左平移1個單位,再向下平移1個單位后所得拋物線的表達式為:故選:B【點睛】本題考查的是二次函數(shù)的平移,掌握其平移規(guī)律是關鍵,需注意:二次函數(shù)平移時必須化成頂點式.3、A【分析】連接BE、AD,根據(jù)直徑得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度數(shù),根據(jù)圓周角定理求出即可.【詳解】解:連接BE、AD,
∵AB是圓的直徑,
∴∠ADB=∠AEB=90°,
∴AD⊥BC,
∵AB=AC,∠C=70°,
∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°
∴=50°.故選A.【點睛】本題考查了圓周角定理,等腰三角形的性質等知識,準確作出輔助線是解題的關鍵.4、A【解析】選項A,經(jīng)過不在同一直線上的三個點可以作圓;選項B,經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心,正確;選項C,同圓或等圓中,相等的圓心角所對的弧相等,正確;選項D,三角形的外心到三角形各頂點的距離相等,正確;故選A.5、A【分析】代入兩點的坐標可得,,所以,由拋物線的頂點在第一象限可得且,可得,再根據(jù)、,可得S的變化范圍.【詳解】將點(0,1)代入中可得將點(-1,0)代入中可得∴∵二次函數(shù)圖象的頂點在第一象限∴對稱軸且∴∵,∴∴故答案為:A.【點睛】本題考查了二次函數(shù)的系數(shù)問題,掌握二次函數(shù)的性質以及各系數(shù)間的關系是解題的關鍵.6、C【分析】根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、投擲一枚硬幣10次,有5次正面朝上是隨機事件;
B、任意一個五邊形的外角和是360°是確定事件;
C、從裝滿白球的袋子里摸出紅球是不可能事件;
D、大年初一會下雨是隨機事件,
故選:C.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、A【解析】根據(jù)直線和圓的位置關系的判定方法,即圓心到直線的距離大于半徑,則直線與圓相離進行判斷.【詳解】解:∵圓心O到直線l的距離d=1,⊙O的半徑R=4,∴d>R,∴直線和圓相離.故選:A.【點睛】本題考查直線與圓位置關系的判定.掌握半徑和圓心到直線的距離之間的數(shù)量關系是解答此題的關鍵..8、A【分析】反比例函數(shù)在第一象限的一支y隨x的增大而減小,只需判斷a與2a的大小便可得出答案.【詳解】∵a<2a又∵反比例函數(shù)在第一象限的一支y隨x的增大而減小∴故選:A.【點睛】本題考查比較大小,需要用到反比例函數(shù)y與x的增減變化,本題直接讀圖即可得出.9、A【分析】設,根據(jù)正方形的性質可得,再根據(jù)旋轉的性質可得的長,然后由勾股定理可得的長,從而根據(jù)正弦的定義即可得.【詳解】設由正方形的性質得由旋轉的性質得在中,則故選:A.【點睛】本題考查了正方形的性質、旋轉的性質、正弦的定義等知識點,根據(jù)旋轉的性質得出的長是解題關鍵.10、B【分析】由,得∠CMN=∠CNM,從而得∠AMB=∠∠ANC,結合,即可得到結論.【詳解】∵,∴∠CMN=∠CNM,∴180°-∠CMN=180°-∠CNM,即:∠AMB=∠∠ANC,∵,∴,故選B.【點睛】本題主要考查相似三角形的判定定理,掌握“對應邊成比例,夾角相等的兩個三角形相似”是解題的關鍵.二、填空題(每小題3分,共24分)11、1【分析】利用特殊三角函數(shù)值代入求解.【詳解】解:原式=【點睛】熟記特殊的三角函數(shù)值是解題的關鍵.12、1.92【分析】由表格中的數(shù)據(jù)可知優(yōu)等品的頻率在1.92左右擺動,利用頻率估計概率即可求得答案.【詳解】觀察可知優(yōu)等品的頻率在1.92左右,所以從這批玩具中,任意抽取的一個毛絨玩具是優(yōu)等品的概率的估計值是1.92,故答案為:1.92.【點睛】本題考查了利用頻率估計概率,大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,由此可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率的近似值,隨著實驗次數(shù)的增多,值越來越精確.13、【解析】∵在△ABC中,∠C=90°,,∴可設BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sinA=,cosA=,∴sinA+cosA=.故答案為.14、1【分析】設點C(),則點D(),然后根據(jù)CD的長列出方程,求得x的值,得到D的坐標,解直角三角形求得AD.【詳解】解:設點C(),則點D(),∴CD=x﹣()=∵四邊形ABCD是平行四邊形,∴CD=AB=5,∴=5,解得x=1,∴D(﹣3,),作DE⊥AB于E,則DE=,∵∠DAB=60°,故答案為:1.【點睛】本題考查的是平行四邊形的性質、反比例性質、特殊角的三角函數(shù)值,利用平行四邊形性質和反比例函數(shù)的性質列出等式是解題的關鍵.15、減小【分析】根據(jù)題目的函數(shù)解析式和二次函數(shù)的性質,可以得到當x<2時,y隨x的增大如何變化,本題得以解決.【詳解】∵二次函數(shù)y=(x﹣2)2﹣3,∴拋物線開口向上,對稱軸為:x=2,∴當x>2時,y隨x的增大而增大,x<2時,y隨x的增大而減小,故答案為:減?。军c睛】本題考查二次函數(shù)的性質,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.16、【分析】連接,交對稱軸于點,先通過解方程,得,,通過,得,于是利用勾股定理可得到的長;再根據(jù)三角形中位線性質得,,所以;由點在拋物線對稱軸上,、兩點為拋物線與軸的交點,得;利用兩點之間線段最短得到此時的值最小,其最小值為的長,從而得到的最小值.【詳解】如圖,連接,交對稱軸于點,則此時最小.∵拋物線與軸交于,兩點,與軸交于點,∴當時,,解得:,,即,,當時,,即,∴,∴,∵點、、分別是、、的中點,∴,,∴,∵點在拋物線對稱軸上,、兩點為拋物線與軸的交點,∴,∴,∴此時的值最小,其最小值為,∴的最小值為:.故答案為:.【點睛】此題主要考查了拋物線與軸的交點以及利用軸對稱求最短路線,用到了三角形中位線性質和勾股定理.正確得出點位置,以及由拋物線的對稱性得出是解題關鍵.17、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點A(1,a),∴a=1,k=1.故答案為1.18、【分析】在這個圓面上隨意拋一粒豆子,落在圓內(nèi)每一個地方是均等的,因此計算出正方形和圓的面積,利用幾何概率的計算方法解答即可.【詳解】解:因為正方形的邊長為2cm,則對角線的長為cm,所以⊙O的半徑為cm,直徑為2cm,⊙O的面積為2πcm2;正方形的面積為4cm2因為豆子落在圓內(nèi)每一個地方是均等的,所以P(豆子落在正方形ABCD內(nèi))=.故答案為:.【點睛】此題主要考查幾何概率的意義:一般地,如果試驗的基本事件為n,隨機事件A所包含的基本事件數(shù)為m,我們就用來描述事件A出現(xiàn)的可能性大小,稱它為事件A的概率,記作P(A),即有
P(A)=.三、解答題(共66分)19、(1)9.6;(2).【分析】(1)過點作于點,根據(jù)三線合一和勾股定理得BC上的高AM的長,再根據(jù)面積法即可解答;(2)設,則,因為可得,再根據(jù)相似三角形對應邊成比例得,即,從而得解.【詳解】解:(1)如圖1,過點作于點.∵,∴(三線合一)在中,由勾股定理得.又∵∴(2)如圖,設與交于點.∵四邊形是正方形∴,,.設,則由可得,從而,即解得∴(本題也可通過,列方程求解)【點睛】本題考查面積法求高、三角形相似的判定與性質的綜合應用,是比較經(jīng)典的題目.20、(1)拋物線的方點坐標是,;(2)當時,的面積最大,最大值為;(3)存在,或【分析】(1)由定義得出x=y,直接代入求解即可(2)作輔助線PD平行于y軸,先求出拋物線與直線的解析式,設出點P的坐標,利用點坐標求出PD的長,進而求出面積的二次函數(shù),再利用配方法得出最大值(3)通過拋物線與直線的解析式可求出點B,C的坐標,得出△OBC為等腰直角三角形,過點C作交x軸于點M,作交y軸于點N,得出M,N的坐標,得出直線BN、MC的解析式然后解方程組即可.【詳解】解:(1)由題意得:∴解得,∴拋物線的方點坐標是,.(2)過點作軸的平行線交于點.易得平移后拋物線的表達式為,直線的解析式為.設,則.∴∴∴當時,的面積最大,最大值為.(3)如圖所示,過點C作交x軸于點M,作交y軸于點N由已知條件得出點B的坐標為B(3,0),C的坐標為C(0,3),∴△COB是等腰直角三角形,∴可得出M、N的坐標分別為:M(-3,0),N(0,-3)直線CM的解析式為:y=x+3直線BN的解析式為:y=x-3由此可得出:或解方程組得出:或∴或【點睛】本題是一道關于二次函數(shù)的綜合題目,解題的關鍵是根據(jù)題意得出拋物線與直線的解析式.21、(1)證明見解析;(2).【分析】(1)連接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分線的性質可以證明∠DAC=∠OCA,接著利用平行線的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可證明直線CD與⊙O相切于C點;(2)連接BC,∠BAC=30°,在Rt△ABC中可求得AC,同理在Rt△ACD中求得CD.【詳解】(1)證明:連接CO,∵AO=CO,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴CO∥AD,∴CO⊥CD,∴DC為⊙O的切線;(2)解:連接BC,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠DAB=60°,AC平分∠DAB,∴∠BAC=∠DAB=30°,∵⊙O的半徑為3,∴AB=6,∴AC=AB=3.∵∠CAD=30°∴【點睛】此題主要考查了切線的性質與判定,解題時首先利用切線的判定證明切線,然后利用含特殊角度的直角三角形求得邊長即可解決問題.22、見解析【解析】試題分析:由等腰三角形三線合一得FA=FD.又由E是中點,所以EF是中位線,即得結論.∵CD=CA,CF平分∠ACB,∴FA=FD(三線合一),∵FA=FD,AE=EB,∴EF=BD.考點:本題考查的是等腰三角形的性質,三角形的中位線點評:解答本題的關鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.23、4πcm2【分析】由旋轉知△A′BC′≌△ABC,兩個三角形的面積S△A′BC′=S△ABC,將三角形△A′BC′旋轉到三角形△ABC,變成一個扇面,陰影面積=大扇形A′BA面積-小扇形C′OC面積即可.【詳解】解:∵∠BCA=90°,∠BAC=30°,AB=4,∴BC=2,∠CBC′=120°,∠A′BA=120°,由旋轉知△A′BC′≌△ABC∴S△A′BC′=S△ABC,∴S陰影=S△A′BC′+S扇形ABA′-S扇形CBC′-S△ABC=S扇形ABA′-S扇形CBC′=×(42-22)=4π(cm2).【點睛】本題考查陰影部分面積問題,關鍵利用順時針旋轉△A′C′B到△ACB,補上△A′C′B內(nèi)部的陰影面積,使圖形變成一個扇面,用扇形面積公式求出大扇形面積與小扇形面積.24、(1);(1)(1)中的結論仍然成立,理由見解析;(1)(1)中的結論仍然成立,理由見解析.【解析】試題分析:(1)結合正方形的性質及等腰直角三角形的性質,容易得出結論;(1)仍然成立,可證得四邊形OGHB為正方形,則可求出陰影部分的面積為扇形OEF的面積減去正方形OGBH的面積;(3)仍然成立,過O作OR⊥AB,OS⊥BC,垂足分別為R、S,則可證明△ORG≌△OSH,可得出四邊形ORBS的面積=四邊形OGBH的面積,再利用扇形OEF的面積減正方形ORBS的面積即可得出結論.試題解析:(1)當OM經(jīng)過點A時由正方形的性質可知:∠MON=90°,∴S△OAB=S正方形ABCD=S1,S扇形OEF=S圓O=S1,∴S=S扇形OEF-S△OAB=S圓O-S正方形ABCD=S1-S1=(S1-S1),(1)結論仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圓O=S1∵∠OGB=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遺產(chǎn)旅游體驗設計-洞察分析
- 2023年-2024年項目部治理人員安全培訓考試題附答案可下載
- 2023年-2024年項目部治理人員安全培訓考試題答案一套
- 訂艙代理協(xié)議書范文
- 我是一只小蟲子說課稿范文
- 化工企業(yè)靜電危害與應對措施
- 部員工崗位職責規(guī)定
- 文明施工及環(huán)保措施
- 施工安全教育培訓計劃
- 關于公司合作經(jīng)營協(xié)議書范文
- 2024-2025學年一年級數(shù)學上冊期末樂考非紙筆測試題(二 )(蘇教版2024秋)
- 2024秋期國家開放大學??啤陡叩葦?shù)學基礎》一平臺在線形考(形考任務一至四)試題及答案
- (中職)《電子商務基礎》第1套試卷試題及答案
- 汽車三維建模虛擬仿真實驗
- 無人機智慧旅游解決方案
- 行車起重作業(yè)風險分析及管控措施
- 健康管理主題PPT模板-健康管理
- 山西事業(yè)單位專業(yè)技術職務聘任管理
- 110kV及以上電力電纜敷設施工方法要點
- 國家開放大學電大??啤缎谭▽W(1)》期末題庫及答案
- 消防安全承諾書[新].doc
評論
0/150
提交評論