版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
§2.1.2
求曲線的方程
高中數(shù)學(xué)選修2-1·精品課件第二章圓錐曲線與方程§2.1.2求曲線的方程高中數(shù)學(xué)選修2-1·精品課件第二啟動(dòng)思維在我們的現(xiàn)實(shí)生活中,處處可見曲線的身影,從飛逝的流星到雨后的彩虹,從古代的石拱橋到現(xiàn)代雄偉壯觀的跨江(河)橋梁,從眾多的商品設(shè)計(jì)到衛(wèi)星上天的控制等等,無(wú)不體現(xiàn)人們對(duì)曲線的刻畫和應(yīng)用.隨著科學(xué)技術(shù)的運(yùn)用,設(shè)計(jì)者運(yùn)用點(diǎn)的坐標(biāo)來(lái)刻畫曲線,即把曲線數(shù)量化,曲線與點(diǎn)的坐標(biāo)如何建立聯(lián)系呢?啟動(dòng)思維在我們的現(xiàn)實(shí)生活中,處處可見曲線的身影,2走進(jìn)教材求曲線的方程的一般步驟步驟方法(1)建系,設(shè)點(diǎn)(2)找等量(3)列方程(4)化簡(jiǎn)(5)檢驗(yàn)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo)寫出適合條件P的點(diǎn)M的集合P={M|P(M)}用坐標(biāo)表示條件P(M),列出方程f(x,y)=0化方程f(x,y)=0為最簡(jiǎn)形式(運(yùn)算要合理,準(zhǔn)確)檢驗(yàn)所求的方程中有無(wú)特殊點(diǎn)情況走進(jìn)教材求曲線的方程的一般步驟步驟方法(1)建系,設(shè)點(diǎn)(2)3自主練習(xí)1.已知A(1,0),B(-1,0),動(dòng)點(diǎn)M滿足|MA|-|MB|=2,則點(diǎn)M的軌跡方程是(
)A.y=0(-1≤x≤1)
B.y=0(x≥1)C.y=0(x≤-1) D.y=0(|x|≥1)C自主練習(xí)1.已知A(1,0),B(-1,0),動(dòng)點(diǎn)M滿足|M4自主練習(xí)
D自主練習(xí)
D5自主練習(xí)
自主練習(xí)
6典例導(dǎo)航題型一:直接法求軌跡方程
【解析】坐標(biāo)化典例導(dǎo)航題型一:直接法求軌跡方程
【解析】坐標(biāo)化7變式訓(xùn)練已知點(diǎn)M到x軸的距離等于到y(tǒng)軸的距離的2倍,求點(diǎn)M的軌跡方程.解:設(shè)動(dòng)點(diǎn)M的坐標(biāo)為(x,y),則點(diǎn)M到x軸、y軸的距離分別為|y|,|x|.由題意知|y|=2|x|,整理得y=±2x.∴點(diǎn)M的軌跡方程為y=±2x.變式訓(xùn)練已知點(diǎn)M到x軸的距離等于到y(tǒng)軸的距離的2倍,解:設(shè)動(dòng)8典例導(dǎo)航題型二:定義法求軌跡方程已知Rt△ABC,|AB|=2a(a>0),求直角頂點(diǎn)C的軌跡方程.xOyABC動(dòng)點(diǎn)C在形成軌跡的過(guò)程中滿足什么樣的幾何條件?以AB所在直線為x軸,AB的中點(diǎn)為原點(diǎn)O,建立坐標(biāo)系xOy,則有A(-a,0),B(a,0),設(shè)頂點(diǎn)C(x,y).①CA⊥CB
【解析】典例導(dǎo)航題型二:定義法求軌跡方程已知Rt△ABC,|AB|=9典例導(dǎo)航由△ABC是直角三角形可知|OC|=|OB|=a,C點(diǎn)的軌跡是以O(shè)為圓心,以a為半徑的圓(除去A、B兩點(diǎn)),∴C點(diǎn)的軌跡方程為x2+y2=a2(x≠±a).xOyABC典例導(dǎo)航由△ABC是直角三角形可知xOyABC10變式訓(xùn)練過(guò)點(diǎn)P(2,4)作兩條互相垂直的直線l1、l2,若l1交x軸于A點(diǎn),l2交y軸于B點(diǎn),求線段AB的中點(diǎn)M的軌跡方程.
變式訓(xùn)練過(guò)點(diǎn)P(2,4)作兩條互相垂直的直線l1、l2,若l11典例導(dǎo)航設(shè)定點(diǎn)M(-3,4),動(dòng)點(diǎn)N在圓x2+y2=4上運(yùn)動(dòng),以O(shè)M,ON為兩邊作平行四邊形MONP,求點(diǎn)P的軌跡方程.題型三:代入法求軌跡方程在固定軌跡上運(yùn)動(dòng)的動(dòng)點(diǎn)隨點(diǎn)N運(yùn)動(dòng)而運(yùn)動(dòng)的動(dòng)點(diǎn)兩動(dòng)點(diǎn)的坐標(biāo)關(guān)系典例導(dǎo)航設(shè)定點(diǎn)M(-3,4),動(dòng)點(diǎn)N在圓x2+y2=4上運(yùn)12典例導(dǎo)航
【解析】為什么?典例導(dǎo)航
【解析】為什么?13變式訓(xùn)練已知點(diǎn)A(0,-1),當(dāng)點(diǎn)B在曲線y=2x2+1上運(yùn)動(dòng)時(shí),線段AB的中點(diǎn)M的軌跡方程是
.解:設(shè)M(x,y),B(x0,y0)化簡(jiǎn),得y=4x2.∴2y+1=2(2x)2+1∵B在曲線y=2x2+1上由題意知即
變式訓(xùn)練已知點(diǎn)A(0,-1),當(dāng)點(diǎn)B在曲線y=2x2+1上運(yùn)14歸納小結(jié)1.直接法求軌跡方程:建、設(shè)、限、代、化2.定義法求軌跡方程:將形成軌跡的動(dòng)點(diǎn)滿足的條件進(jìn)行合理轉(zhuǎn)化,結(jié)合已知的軌跡定義,發(fā)現(xiàn)動(dòng)點(diǎn)形成的是何軌跡.3.代入法求軌跡方程:必有多個(gè)動(dòng)點(diǎn),其中一個(gè)點(diǎn)在已知軌跡上運(yùn)動(dòng),另一動(dòng)點(diǎn)隨著其運(yùn)動(dòng)而運(yùn)動(dòng),明確它們的坐標(biāo)關(guān)系時(shí)解決問(wèn)題的關(guān)鍵.歸納小結(jié)1.直接法求軌跡方程:建、設(shè)、限、代、化2.定義法求15ThankYou!ThankYou!§2.1.2
求曲線的方程
高中數(shù)學(xué)選修2-1·精品課件第二章圓錐曲線與方程§2.1.2求曲線的方程高中數(shù)學(xué)選修2-1·精品課件第二啟動(dòng)思維在我們的現(xiàn)實(shí)生活中,處處可見曲線的身影,從飛逝的流星到雨后的彩虹,從古代的石拱橋到現(xiàn)代雄偉壯觀的跨江(河)橋梁,從眾多的商品設(shè)計(jì)到衛(wèi)星上天的控制等等,無(wú)不體現(xiàn)人們對(duì)曲線的刻畫和應(yīng)用.隨著科學(xué)技術(shù)的運(yùn)用,設(shè)計(jì)者運(yùn)用點(diǎn)的坐標(biāo)來(lái)刻畫曲線,即把曲線數(shù)量化,曲線與點(diǎn)的坐標(biāo)如何建立聯(lián)系呢?啟動(dòng)思維在我們的現(xiàn)實(shí)生活中,處處可見曲線的身影,18走進(jìn)教材求曲線的方程的一般步驟步驟方法(1)建系,設(shè)點(diǎn)(2)找等量(3)列方程(4)化簡(jiǎn)(5)檢驗(yàn)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo)寫出適合條件P的點(diǎn)M的集合P={M|P(M)}用坐標(biāo)表示條件P(M),列出方程f(x,y)=0化方程f(x,y)=0為最簡(jiǎn)形式(運(yùn)算要合理,準(zhǔn)確)檢驗(yàn)所求的方程中有無(wú)特殊點(diǎn)情況走進(jìn)教材求曲線的方程的一般步驟步驟方法(1)建系,設(shè)點(diǎn)(2)19自主練習(xí)1.已知A(1,0),B(-1,0),動(dòng)點(diǎn)M滿足|MA|-|MB|=2,則點(diǎn)M的軌跡方程是(
)A.y=0(-1≤x≤1)
B.y=0(x≥1)C.y=0(x≤-1) D.y=0(|x|≥1)C自主練習(xí)1.已知A(1,0),B(-1,0),動(dòng)點(diǎn)M滿足|M20自主練習(xí)
D自主練習(xí)
D21自主練習(xí)
自主練習(xí)
22典例導(dǎo)航題型一:直接法求軌跡方程
【解析】坐標(biāo)化典例導(dǎo)航題型一:直接法求軌跡方程
【解析】坐標(biāo)化23變式訓(xùn)練已知點(diǎn)M到x軸的距離等于到y(tǒng)軸的距離的2倍,求點(diǎn)M的軌跡方程.解:設(shè)動(dòng)點(diǎn)M的坐標(biāo)為(x,y),則點(diǎn)M到x軸、y軸的距離分別為|y|,|x|.由題意知|y|=2|x|,整理得y=±2x.∴點(diǎn)M的軌跡方程為y=±2x.變式訓(xùn)練已知點(diǎn)M到x軸的距離等于到y(tǒng)軸的距離的2倍,解:設(shè)動(dòng)24典例導(dǎo)航題型二:定義法求軌跡方程已知Rt△ABC,|AB|=2a(a>0),求直角頂點(diǎn)C的軌跡方程.xOyABC動(dòng)點(diǎn)C在形成軌跡的過(guò)程中滿足什么樣的幾何條件?以AB所在直線為x軸,AB的中點(diǎn)為原點(diǎn)O,建立坐標(biāo)系xOy,則有A(-a,0),B(a,0),設(shè)頂點(diǎn)C(x,y).①CA⊥CB
【解析】典例導(dǎo)航題型二:定義法求軌跡方程已知Rt△ABC,|AB|=25典例導(dǎo)航由△ABC是直角三角形可知|OC|=|OB|=a,C點(diǎn)的軌跡是以O(shè)為圓心,以a為半徑的圓(除去A、B兩點(diǎn)),∴C點(diǎn)的軌跡方程為x2+y2=a2(x≠±a).xOyABC典例導(dǎo)航由△ABC是直角三角形可知xOyABC26變式訓(xùn)練過(guò)點(diǎn)P(2,4)作兩條互相垂直的直線l1、l2,若l1交x軸于A點(diǎn),l2交y軸于B點(diǎn),求線段AB的中點(diǎn)M的軌跡方程.
變式訓(xùn)練過(guò)點(diǎn)P(2,4)作兩條互相垂直的直線l1、l2,若l27典例導(dǎo)航設(shè)定點(diǎn)M(-3,4),動(dòng)點(diǎn)N在圓x2+y2=4上運(yùn)動(dòng),以O(shè)M,ON為兩邊作平行四邊形MONP,求點(diǎn)P的軌跡方程.題型三:代入法求軌跡方程在固定軌跡上運(yùn)動(dòng)的動(dòng)點(diǎn)隨點(diǎn)N運(yùn)動(dòng)而運(yùn)動(dòng)的動(dòng)點(diǎn)兩動(dòng)點(diǎn)的坐標(biāo)關(guān)系典例導(dǎo)航設(shè)定點(diǎn)M(-3,4),動(dòng)點(diǎn)N在圓x2+y2=4上運(yùn)28典例導(dǎo)航
【解析】為什么?典例導(dǎo)航
【解析】為什么?29變式訓(xùn)練已知點(diǎn)A(0,-1),當(dāng)點(diǎn)B在曲線y=2x2+1上運(yùn)動(dòng)時(shí),線段AB的中點(diǎn)M的軌跡方程是
.解:設(shè)M(x,y),B(x0,y0)化簡(jiǎn),得y=4x2.∴2y+1=2(2x)2+1∵B在曲線y=2x2+1上由題意知即
變式訓(xùn)練已知點(diǎn)A(0,-1),當(dāng)點(diǎn)B在曲
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年設(shè)備租賃合同設(shè)備類型與租賃條件
- 2024年網(wǎng)絡(luò)安全防護(hù)技術(shù)保密合同
- 2024新能源汽車生產(chǎn)與銷售股份轉(zhuǎn)讓協(xié)議
- 2025年度智能家居窗簾智能控制升級(jí)合同3篇
- 2024食材配送與食堂承包合同
- 2025年度數(shù)據(jù)中心機(jī)房租賃及維護(hù)合同3篇
- 2024年防盜門交易協(xié)議范本版B版
- 2024年高科技產(chǎn)業(yè)在建項(xiàng)目抵押貸款協(xié)議3篇
- 2024年項(xiàng)目融資合同協(xié)議
- 2025年度海洋油氣資源勘探開發(fā)承包合同樣本3篇
- 【公開課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級(jí)下冊(cè)+
- 高職組全國(guó)職業(yè)院校技能大賽(嬰幼兒照護(hù)賽項(xiàng))備賽試題庫(kù)(含答案)
- 12G614-1砌體填充墻結(jié)構(gòu)構(gòu)造
- 湖北省武漢市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)及行政區(qū)劃代碼
- 路面輪胎模型建立方法swift
- 裝飾工程施工技術(shù)ppt課件(完整版)
- SJG 05-2020 基坑支護(hù)技術(shù)標(biāo)準(zhǔn)-高清現(xiàn)行
- 汽車維修價(jià)格表
- 10KV供配電工程施工組織設(shè)計(jì)
- C#讀取DXF文件
- 支付平臺(tái)線上統(tǒng)一對(duì)賬接口說(shuō)明V0.2.docx
評(píng)論
0/150
提交評(píng)論