版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
牛吃草問題
實驗中學沈曉牛吃草問題“一堆草可供10頭牛吃3天,這堆草可供6頭牛吃幾天?”這道題太簡單了,同學們一下就可求出:3×10÷6=5(天)。如果我們把“一堆草”換成“一片正在生長的草地”,問題就不那么簡單了,因為草每天都在生長,草的數(shù)量在不斷變化。這類工作總量不固定(均勻變化)的問題就是牛吃草問題?!耙欢巡菘晒?0頭牛吃3天,這堆草可供6頭牛吃幾天?”這道題例1牧場上一片青草,每天牧草都勻速生長。這片牧草可供10頭牛吃20天,或者可供15頭牛吃10天。問:可供25頭牛吃幾天?
分析與解:這類題難就難在牧場上草的數(shù)量每天都在發(fā)生變化,我們要想辦法從變化當中找到不變的量??偛萘靠梢苑譃槟翀錾显械牟莺托律L出來的草兩部分。牧場上原有的草是不變的,新長出的草雖然在變化,因為是勻速生長,所以這片草地每天新長出的草的數(shù)量相同,即每天新長出的草是不變的。下面,就要設(shè)法計算出原有的草量和每天新長出的草量這兩個不變量。例1牧場上一片青草,每天牧草都勻速生長。這片牧草可供10頭設(shè)1頭牛一天吃的草為1份。那么,10頭牛20天吃200份,草被吃完;15頭牛10天吃150份,草也被吃完。前者的總草量是200份,后者的總草量是150份,前者是原有的草加20天新長出的草,后者是原有的草加10天新長出的草。200-150=50(份),20—10=10(天),說明牧場10天長草50份,1天長草5份。也就是說,5頭牛專吃新長出來的草剛好吃完,5頭牛以外的牛吃的草就是牧場上原有的草。由此得出,牧場上原有草(l0—5)×20=100(份)或(15—5)×10=100(份)?,F(xiàn)在已經(jīng)知道原有草100份,每天新長出草5份。當有25頭牛時,其中的5頭專吃新長出來的草,剩下的20頭吃原有的草,吃完需100÷20=5(天)。所以,這片草地可供25頭牛吃5天。設(shè)1頭牛一天吃的草為1份。那么,10頭牛20天吃200份,草在例1的解法中要注意三點:(1)每天新長出的草量是通過已知的兩種不同情況吃掉的總草量的差及吃的天數(shù)的差計算出來的。(2)在已知的兩種情況中,任選一種,假定其中幾頭牛專吃新長出的草,由剩下的牛吃原有的草,根據(jù)吃的天數(shù)可以計算出原有的草量。(3)在所求的問題中,讓幾頭牛專吃新長出的草,其余的牛吃原有的草,根據(jù)原有的草量可以計算出能吃幾天。在例1的解法中要注意三點:例2一個水池裝一個進水管和三個同樣的出水管。先打開進水管,等水池存了一些水后,再打開出水管。如果同時打開2個出水管,那么8分鐘后水池空;如果同時打開3個出水管,那么5分鐘后水池空。那么出水管比進水管晚開多少分鐘?
分析:雖然表面上沒有“牛吃草”,但因為總的水量在均勻變化,“水”相當于“草”,進水管進的水相當于新長出的草,出水管排的水相當于牛在吃草,所以也是牛吃草問題,解法自然也與例1相似。出水管所排出的水可以分為兩部分:一部分是出水管打開之前原有的水量,另一部分是開始排水至排空這段時間內(nèi)進水管放進的水。因為原有的水量是不變的,所以可以從比較兩次排水所用的時間及排水量入手解決問題。例2一個水池裝一個進水管和三個同樣的出水管。先打開進水管,設(shè)出水管每分鐘排出水池的水為1份,則2個出水管8分鐘所排的水是2×8=16(份),3個出水管5分鐘所排的水是3×5=15(份),這兩次排出的水量都包括原有水量和從開始排水至排空這段時間內(nèi)的進水量。兩者相減就是在8-5=3(分)內(nèi)所放進的水量,所以每分鐘的進水量是設(shè)出水管每分鐘排出水池的水為1份,則2個出水管8分鐘所排的水例3
由于天氣逐漸冷起來,牧場上的草不僅不長大,反而以固定的速度在減少。已知某塊草地上的草可供20頭牛吃5天,或可供15頭牛吃6天。照此計算,可供多少頭牛吃10天?
分析與解:與例1不同的是,不僅沒有新長出的草,而且原有的草還在減少。但是,我們同樣可以利用例1的方法,求出每天減少的草量和原有的草量。設(shè)1頭牛1天吃的草為1份。20頭牛5天吃100份,15頭牛6天吃90份,100-90=10(份),說明寒冷使牧場1天減少青草10份,也就是說,寒冷相當于10頭牛在吃草。由“草地上的草可供20頭牛吃5天”,再加上“寒冷”代表的10頭牛同時在吃草,所以牧場原有草(20+10)×5=150(份)。由150÷10=15知,牧場原有草可供15頭牛吃10天,寒冷占去10頭牛,所以,可供5頭牛吃10天。例3由于天氣逐漸冷起來,牧場上的草不僅不長大,反而以固定的例4自動扶梯以均勻速度由下往上行駛著,兩位性急的孩子要從扶梯上樓。已知男孩每分鐘走20級梯級,女孩每分鐘走15級梯級,結(jié)果男孩用了5分鐘到達樓上,女孩用了6分鐘到達樓上。問:該扶梯共有多少級?
分析:與例3比較,“總的草量”變成了“扶梯的梯級總數(shù)”,“草”變成了“梯級”,“?!弊兂闪恕八俣取?,也可以看成牛吃草問題。上樓的速度可以分為兩部分:一部分是男、女孩自己的速度,另一部分是自動扶梯的速度。男孩5分鐘走了20×5=100(級),女孩6分鐘走了15×6=90(級),女孩比男孩少走了100-90=10(級),多用了6-5=1(分),說明電梯1分鐘走10級。由男孩5分鐘到達樓上,他上樓的速度是自己的速度與扶梯的速度之和,所以扶梯共有(20+10)×5=150(級)。例4自動扶梯以均勻速度由下往上行駛著,兩位性急的孩子要從扶解:自動扶梯每分鐘走(20×5-15×6)÷(6—5)=10(級),自動扶梯共有(20+10)×5=150(級)。答:扶梯共有150級。解:自動扶梯每分鐘走例5
某車站在檢票前若干分鐘就開始排隊,每分鐘來的旅客人數(shù)一樣多。從開始檢票到等候檢票的隊伍消失,同時開4個檢票口需30分鐘,同時開5個檢票口需20分鐘。如果同時打開7個檢票口,那么需多少分鐘?例5某車站在檢票前若干分鐘就開始排隊,每分鐘來的旅客人數(shù)一分析與解:等候檢票的旅客人數(shù)在變化,“旅客”相當于“草”,“檢票口”相當于“?!?,可以用牛吃草問題的解法求解。旅客總數(shù)由兩部分組成:一部分是開始檢票前已經(jīng)在排隊的原有旅客,另一部分是開始檢票后新來的旅客。設(shè)1個檢票口1分鐘檢票的人數(shù)為1份。因為4個檢票口30分鐘通過(4×30)份,5個檢票口20分鐘通過(5×20)份,說明在(30-20)分鐘內(nèi)新來旅客(4×30-5×20)份,所以每分鐘新來旅客(4×30-5×20)÷(30-20)=2(份)。假設(shè)讓2個檢票口專門通過新來的旅客,兩相抵消,其余的檢票口通過原來的旅客,可以求出原有旅客為(4-2)×30=60(份)或(5-2)×20=60(份)。同時打開7個檢票口時,讓2個檢票口專門通過新來的旅客,其余的檢票口通過原來的旅客,需要60÷(7-2)=12(分)。分析與解:等候檢票的旅客人數(shù)在變化,“旅客”相當于“草”,“例6
有三塊草地,面積分別為5,6和8公頃。草地上的草一樣厚,而且長得一樣快。第一塊草地可供11頭牛吃10天,第二塊草地可供12頭牛吃14天。問:第三塊草地可供19頭牛吃多少天?例6有三塊草地,面積分別為5,6和8公頃。草地上的草一樣厚分析與解:例1是在同一塊草地上,現(xiàn)在是三塊面積不同的草地。為了解決這個問題,只需將三塊草地的面積統(tǒng)一起來。[5,6,8]=120。因為5公頃草地可供11頭牛吃10天,120÷5=24,所以120公頃草地可供11×24=264(頭)牛吃10天。因為6公頃草地可供12頭牛吃14天,120÷6=20,所以120公頃草地可供12×20=240(頭)牛吃14天。120÷8=15,問題變?yōu)椋?20公頃草地可供19×15=285(頭)牛吃幾天?因為草地面積相同,可忽略具體公頃數(shù),所以原題可變?yōu)椋骸耙粔K勻速生長的草地,可供264頭牛吃10天,或供240頭牛吃14天,那么可供285頭牛吃幾天?”這與例1完全一樣。設(shè)1頭牛1天吃的草為1份。每天新長出的草有(240×14-264×10)÷(14-10)=180(份)。草地原有草(264—180)×10=840(份)??晒?85頭牛吃840÷(285—180)=8(天)。所以,第三塊草地可供19頭牛吃8天。分析與解:例1是在同一塊草地上,現(xiàn)在是三塊面積不同的草地。為1.一牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6周或供23頭牛吃9周。那么,可供21頭牛吃幾周?2.一牧場上的青草每天都勻速生長。這片青草可供17頭牛吃30天,或供19頭牛吃24天?,F(xiàn)有一群牛,吃了6天后賣掉4頭,余下的牛又吃了2天將草吃完,這群牛原來有多少頭?3.經(jīng)測算,地球上的資源可供100億人生活100年,或可供80億人生活300年。假設(shè)地球新生成的資源增長速度是一定的,為使人類有不斷發(fā)展的潛力,地球最多能養(yǎng)活多少億人?4.有一水池,池底有泉水不斷涌出。用10部抽水機20時可以把水抽干;用15部同樣的抽水機,10時可以把水抽干。那么,用25部這樣的抽水機多少小時可以把水抽干?1.一牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6周5.某車站在檢票前若干分鐘就開始排隊,每分鐘來的旅客人數(shù)一樣多。如果同時開放3個檢票口,那么40分鐘檢票口前的隊伍恰好消失;如果同時開放4個檢票口,那么25分鐘隊伍恰好消失。如果同時開放8個檢票口,那么隊伍多少分鐘恰好消失?6.兩只蝸牛由于耐不住陽光的照射,從井頂逃向井底。白天往下爬,兩只蝸牛白天爬行的速度是不同的,一只每個白天爬20分米,另一只爬15分米。黑夜里往下滑,兩只蝸牛滑行的速度卻是相同的。結(jié)果一只蝸牛恰好用5個晝夜到達井底,另一只蝸牛恰好用6個晝夜到達井底。那么,井深多少米?7.兩位頑皮的孩子逆著自動扶梯的方向行走。在20秒鐘里,男孩可走27級梯級,女孩可走24級梯級,結(jié)果男孩走了2分鐘到達另一端,女孩走了3分鐘到達另一端。問:該扶梯共多少級?5.某車站在檢票前若干分鐘就開始排隊,每分鐘來的旅客人數(shù)一樣曾經(jīng)有一個農(nóng)夫,一生靠養(yǎng)牛來維持為業(yè)。農(nóng)夫臨終前留下遺言,給他的三個兒子留下十七頭牛作為遺產(chǎn),大兒子跟隨他放了十年牛,對家庭做出了很大的貢獻,農(nóng)夫決定將牛分一半給他;二兒子跟隨他放了五年牛,對家庭也做出了貢獻,農(nóng)夫于是分給他三分之一;三兒子跟隨農(nóng)夫放了一年牛,農(nóng)夫決定分給他九分之一.曾經(jīng)有一個農(nóng)夫,一生靠養(yǎng)牛來維持為業(yè)。農(nóng)夫臨終前留下遺言,給編后語老師上課都有一定的思路,抓住老師的思路就能取得良好的學習效果。在上一小節(jié)中已經(jīng)提及聽課中要跟隨老師的思路,這里再進一步論述聽課時如何抓住老師的思路。①根據(jù)課堂提問抓住老師的思路。老師在講課過程中往往會提出一些問題,有的要求回答,有的則是自問自答。一般來說,老師在課堂上提出的問題都是學習中的關(guān)鍵,若能抓住老師提出的問題深入思考,就可以抓住老師的思路。②根據(jù)自己預(yù)習時理解過的邏輯結(jié)構(gòu)抓住老師的思路。老師講課在多數(shù)情況下是根據(jù)教材本身的知識結(jié)構(gòu)展開的,若把自己預(yù)習時所理解過的知識邏輯結(jié)構(gòu)與老師的講解過程進行比較,便可以抓住老師的思路。③根據(jù)老師的提示抓住老師的思路。老師在教學中經(jīng)常有一些提示用語,如“請注意”、“我再重復一遍”、“這個問題的關(guān)鍵是····”等等,這些用語往往體現(xiàn)了老師的思路。來自:學習方法網(wǎng)④緊跟老師的推導過程抓住老師的思路。老師在課堂上講解某一結(jié)論時,一般有一個推導過程,如數(shù)學問題的來龍去脈、物理概念的抽象歸納、語文課的分析等。感悟和理解推導過程是一個投入思維、感悟方法的過程,這有助于理解記憶結(jié)論,也有助于提高分析問題和運用知識的能力。⑤擱置問題抓住老師的思路。碰到自己還沒有完全理解老師所講內(nèi)容的時候,最好是做個記號,姑且先把這個問題放在一邊,繼續(xù)聽老師講后面的內(nèi)容,以免顧此失彼。來自:學習方法網(wǎng)⑥利用筆記抓住老師的思路。記筆記不僅有利于理解和記憶,而且有利于抓住老師的思路。2022/12/27最新中小學教學課件18編后語老師上課都有一定的思路,抓住老師的思路就能取得良好的學2022/12/27最新中小學教學課件19謝謝欣賞!2022/12/19最新中小學教學課件19謝謝欣賞!牛吃草問題
實驗中學沈曉牛吃草問題“一堆草可供10頭牛吃3天,這堆草可供6頭牛吃幾天?”這道題太簡單了,同學們一下就可求出:3×10÷6=5(天)。如果我們把“一堆草”換成“一片正在生長的草地”,問題就不那么簡單了,因為草每天都在生長,草的數(shù)量在不斷變化。這類工作總量不固定(均勻變化)的問題就是牛吃草問題?!耙欢巡菘晒?0頭牛吃3天,這堆草可供6頭牛吃幾天?”這道題例1牧場上一片青草,每天牧草都勻速生長。這片牧草可供10頭牛吃20天,或者可供15頭牛吃10天。問:可供25頭牛吃幾天?
分析與解:這類題難就難在牧場上草的數(shù)量每天都在發(fā)生變化,我們要想辦法從變化當中找到不變的量??偛萘靠梢苑譃槟翀錾显械牟莺托律L出來的草兩部分。牧場上原有的草是不變的,新長出的草雖然在變化,因為是勻速生長,所以這片草地每天新長出的草的數(shù)量相同,即每天新長出的草是不變的。下面,就要設(shè)法計算出原有的草量和每天新長出的草量這兩個不變量。例1牧場上一片青草,每天牧草都勻速生長。這片牧草可供10頭設(shè)1頭牛一天吃的草為1份。那么,10頭牛20天吃200份,草被吃完;15頭牛10天吃150份,草也被吃完。前者的總草量是200份,后者的總草量是150份,前者是原有的草加20天新長出的草,后者是原有的草加10天新長出的草。200-150=50(份),20—10=10(天),說明牧場10天長草50份,1天長草5份。也就是說,5頭牛專吃新長出來的草剛好吃完,5頭牛以外的牛吃的草就是牧場上原有的草。由此得出,牧場上原有草(l0—5)×20=100(份)或(15—5)×10=100(份)。現(xiàn)在已經(jīng)知道原有草100份,每天新長出草5份。當有25頭牛時,其中的5頭專吃新長出來的草,剩下的20頭吃原有的草,吃完需100÷20=5(天)。所以,這片草地可供25頭牛吃5天。設(shè)1頭牛一天吃的草為1份。那么,10頭牛20天吃200份,草在例1的解法中要注意三點:(1)每天新長出的草量是通過已知的兩種不同情況吃掉的總草量的差及吃的天數(shù)的差計算出來的。(2)在已知的兩種情況中,任選一種,假定其中幾頭牛專吃新長出的草,由剩下的牛吃原有的草,根據(jù)吃的天數(shù)可以計算出原有的草量。(3)在所求的問題中,讓幾頭牛專吃新長出的草,其余的牛吃原有的草,根據(jù)原有的草量可以計算出能吃幾天。在例1的解法中要注意三點:例2一個水池裝一個進水管和三個同樣的出水管。先打開進水管,等水池存了一些水后,再打開出水管。如果同時打開2個出水管,那么8分鐘后水池空;如果同時打開3個出水管,那么5分鐘后水池空。那么出水管比進水管晚開多少分鐘?
分析:雖然表面上沒有“牛吃草”,但因為總的水量在均勻變化,“水”相當于“草”,進水管進的水相當于新長出的草,出水管排的水相當于牛在吃草,所以也是牛吃草問題,解法自然也與例1相似。出水管所排出的水可以分為兩部分:一部分是出水管打開之前原有的水量,另一部分是開始排水至排空這段時間內(nèi)進水管放進的水。因為原有的水量是不變的,所以可以從比較兩次排水所用的時間及排水量入手解決問題。例2一個水池裝一個進水管和三個同樣的出水管。先打開進水管,設(shè)出水管每分鐘排出水池的水為1份,則2個出水管8分鐘所排的水是2×8=16(份),3個出水管5分鐘所排的水是3×5=15(份),這兩次排出的水量都包括原有水量和從開始排水至排空這段時間內(nèi)的進水量。兩者相減就是在8-5=3(分)內(nèi)所放進的水量,所以每分鐘的進水量是設(shè)出水管每分鐘排出水池的水為1份,則2個出水管8分鐘所排的水例3
由于天氣逐漸冷起來,牧場上的草不僅不長大,反而以固定的速度在減少。已知某塊草地上的草可供20頭牛吃5天,或可供15頭牛吃6天。照此計算,可供多少頭牛吃10天?
分析與解:與例1不同的是,不僅沒有新長出的草,而且原有的草還在減少。但是,我們同樣可以利用例1的方法,求出每天減少的草量和原有的草量。設(shè)1頭牛1天吃的草為1份。20頭牛5天吃100份,15頭牛6天吃90份,100-90=10(份),說明寒冷使牧場1天減少青草10份,也就是說,寒冷相當于10頭牛在吃草。由“草地上的草可供20頭牛吃5天”,再加上“寒冷”代表的10頭牛同時在吃草,所以牧場原有草(20+10)×5=150(份)。由150÷10=15知,牧場原有草可供15頭牛吃10天,寒冷占去10頭牛,所以,可供5頭牛吃10天。例3由于天氣逐漸冷起來,牧場上的草不僅不長大,反而以固定的例4自動扶梯以均勻速度由下往上行駛著,兩位性急的孩子要從扶梯上樓。已知男孩每分鐘走20級梯級,女孩每分鐘走15級梯級,結(jié)果男孩用了5分鐘到達樓上,女孩用了6分鐘到達樓上。問:該扶梯共有多少級?
分析:與例3比較,“總的草量”變成了“扶梯的梯級總數(shù)”,“草”變成了“梯級”,“牛”變成了“速度”,也可以看成牛吃草問題。上樓的速度可以分為兩部分:一部分是男、女孩自己的速度,另一部分是自動扶梯的速度。男孩5分鐘走了20×5=100(級),女孩6分鐘走了15×6=90(級),女孩比男孩少走了100-90=10(級),多用了6-5=1(分),說明電梯1分鐘走10級。由男孩5分鐘到達樓上,他上樓的速度是自己的速度與扶梯的速度之和,所以扶梯共有(20+10)×5=150(級)。例4自動扶梯以均勻速度由下往上行駛著,兩位性急的孩子要從扶解:自動扶梯每分鐘走(20×5-15×6)÷(6—5)=10(級),自動扶梯共有(20+10)×5=150(級)。答:扶梯共有150級。解:自動扶梯每分鐘走例5
某車站在檢票前若干分鐘就開始排隊,每分鐘來的旅客人數(shù)一樣多。從開始檢票到等候檢票的隊伍消失,同時開4個檢票口需30分鐘,同時開5個檢票口需20分鐘。如果同時打開7個檢票口,那么需多少分鐘?例5某車站在檢票前若干分鐘就開始排隊,每分鐘來的旅客人數(shù)一分析與解:等候檢票的旅客人數(shù)在變化,“旅客”相當于“草”,“檢票口”相當于“?!保梢杂门3圆輪栴}的解法求解。旅客總數(shù)由兩部分組成:一部分是開始檢票前已經(jīng)在排隊的原有旅客,另一部分是開始檢票后新來的旅客。設(shè)1個檢票口1分鐘檢票的人數(shù)為1份。因為4個檢票口30分鐘通過(4×30)份,5個檢票口20分鐘通過(5×20)份,說明在(30-20)分鐘內(nèi)新來旅客(4×30-5×20)份,所以每分鐘新來旅客(4×30-5×20)÷(30-20)=2(份)。假設(shè)讓2個檢票口專門通過新來的旅客,兩相抵消,其余的檢票口通過原來的旅客,可以求出原有旅客為(4-2)×30=60(份)或(5-2)×20=60(份)。同時打開7個檢票口時,讓2個檢票口專門通過新來的旅客,其余的檢票口通過原來的旅客,需要60÷(7-2)=12(分)。分析與解:等候檢票的旅客人數(shù)在變化,“旅客”相當于“草”,“例6
有三塊草地,面積分別為5,6和8公頃。草地上的草一樣厚,而且長得一樣快。第一塊草地可供11頭牛吃10天,第二塊草地可供12頭牛吃14天。問:第三塊草地可供19頭牛吃多少天?例6有三塊草地,面積分別為5,6和8公頃。草地上的草一樣厚分析與解:例1是在同一塊草地上,現(xiàn)在是三塊面積不同的草地。為了解決這個問題,只需將三塊草地的面積統(tǒng)一起來。[5,6,8]=120。因為5公頃草地可供11頭牛吃10天,120÷5=24,所以120公頃草地可供11×24=264(頭)牛吃10天。因為6公頃草地可供12頭牛吃14天,120÷6=20,所以120公頃草地可供12×20=240(頭)牛吃14天。120÷8=15,問題變?yōu)椋?20公頃草地可供19×15=285(頭)牛吃幾天?因為草地面積相同,可忽略具體公頃數(shù),所以原題可變?yōu)椋骸耙粔K勻速生長的草地,可供264頭牛吃10天,或供240頭牛吃14天,那么可供285頭牛吃幾天?”這與例1完全一樣。設(shè)1頭牛1天吃的草為1份。每天新長出的草有(240×14-264×10)÷(14-10)=180(份)。草地原有草(264—180)×10=840(份)??晒?85頭牛吃840÷(285—180)=8(天)。所以,第三塊草地可供19頭牛吃8天。分析與解:例1是在同一塊草地上,現(xiàn)在是三塊面積不同的草地。為1.一牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6周或供23頭牛吃9周。那么,可供21頭牛吃幾周?2.一牧場上的青草每天都勻速生長。這片青草可供17頭牛吃30天,或供19頭牛吃24天。現(xiàn)有一群牛,吃了6天后賣掉4頭,余下的牛又吃了2天將草吃完,這群牛原來有多少頭?3.經(jīng)測算,地球上的資源可供100億人生活100年,或可供80億人生活300年。假設(shè)地球新生成的資源增長速度是一定的,為使人類有不斷發(fā)展的潛力,地球最多能養(yǎng)活多少億人?4.有一水池,池底有泉水不斷涌出。用10部抽水機20時可以把水抽干;用15部同樣的抽水機,10時可以把水抽干。那么,用25部這樣的抽水機多少小時可以把水抽干?1.一牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6周5.某車站在檢票前若干分鐘就開始排隊,每分鐘來的旅客人數(shù)一樣多。如果同時開放3個檢票口,那么40分鐘檢票口前的隊伍恰好消失;如果同時開放4個檢票口,那么25分鐘隊伍恰好消失。如果同時開放8個檢票口,那么隊伍多少分鐘恰好消失?6.兩只蝸牛由于耐不住陽光的照射,從井頂逃向井底。白天往下爬,兩只蝸牛白天爬行的速度是不同的,一只每個白天爬20分米,另一只爬15分米。黑夜里往下滑,兩只蝸牛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2024學年北京豐臺區(qū)高三(上)期中生物試題和答案
- 學生個性發(fā)展與班主任支持計劃
- 醫(yī)療耗材行業(yè)月個人工作計劃
- 班級藝術(shù)節(jié)的策劃與實施計劃
- 修理車賠償協(xié)議書范文
- 銀行房貸協(xié)商協(xié)議書范文范本
- 劃撥房產(chǎn)權(quán)協(xié)議書范文范本
- 一方有外債離婚協(xié)議書范文范本
- 小學必背古詩75首(大字體直接打印版)
- 新視野大學英語第三版讀寫教程第二冊第六單元課后答案
- 2024屆四川成都九年級上冊期末質(zhì)量檢測九區(qū)聯(lián)考語文試題(含答案)
- 水稻插秧機的組成及工作過程課件講解
- 2024年福建漳州市九龍江集團限公司春季中高級人才春季招聘48人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 病案首頁填寫規(guī)范課件
- 2024-勞務(wù)合同與雇傭合同標準版可打印
- 統(tǒng)編版語文二年級上冊第五單元 (大單元教學設(shè)計)
- 辦公文秘工作中的AI助手
- 馬拉松賽事運營服務(wù)方案
- 532002有機化學-天津大學機考題庫答案
- 2024年4月自考00840第二外語(日語)試題
- 校園防霸凌AI系統(tǒng)
評論
0/150
提交評論