三年 (2020-2022 ) 高考真題匯編 專(zhuān)題07平面解析幾何(選擇題、填空題)_第1頁(yè)
三年 (2020-2022 ) 高考真題匯編 專(zhuān)題07平面解析幾何(選擇題、填空題)_第2頁(yè)
三年 (2020-2022 ) 高考真題匯編 專(zhuān)題07平面解析幾何(選擇題、填空題)_第3頁(yè)
三年 (2020-2022 ) 高考真題匯編 專(zhuān)題07平面解析幾何(選擇題、填空題)_第4頁(yè)
三年 (2020-2022 ) 高考真題匯編 專(zhuān)題07平面解析幾何(選擇題、填空題)_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專(zhuān)題07平面解析幾何(選擇題、填空題)【2022年全國(guó)甲卷】1.已知橢圓的離心率為,分別為C的左、右頂點(diǎn),B為C的上頂點(diǎn).若,則C的方程為(

)A. B. C. D.【答案】B【解析】【分析】根據(jù)離心率及,解得關(guān)于的等量關(guān)系式,即可得解.【詳解】解:因?yàn)殡x心率,解得,,分別為C的左右頂點(diǎn),則,B為上頂點(diǎn),所以.所以,因?yàn)樗?,將代入,解得,故橢圓的方程為.故選:B.【2022年全國(guó)甲卷】2.橢圓的左頂點(diǎn)為A,點(diǎn)P,Q均在C上,且關(guān)于y軸對(duì)稱(chēng).若直線的斜率之積為,則C的離心率為(

)A. B. C. D.【答案】A【解析】【分析】設(shè),則,根據(jù)斜率公式結(jié)合題意可得,再根據(jù),將用表示,整理,再結(jié)合離心率公式即可得解.【詳解】解法1:設(shè)而不求設(shè),則則由得:,由,得,所以,即,所以橢圓的離心率,故選A.解法2:第三定義設(shè)右端點(diǎn)為B,連接PB,由橢圓的對(duì)稱(chēng)性知:故,由橢圓第三定義得:,故所以橢圓的離心率,故選A.【2022年全國(guó)乙卷】3.設(shè)F為拋物線的焦點(diǎn),點(diǎn)A在C上,點(diǎn),若,則(

)A.2 B. C.3 D.【答案】B【解析】【分析】根據(jù)拋物線上的點(diǎn)到焦點(diǎn)和準(zhǔn)線的距離相等,從而求得點(diǎn)的橫坐標(biāo),進(jìn)而求得點(diǎn)坐標(biāo),即可得到答案.【詳解】由題意得,,則,即點(diǎn)到準(zhǔn)線的距離為2,所以點(diǎn)的橫坐標(biāo)為,不妨設(shè)點(diǎn)在軸上方,代入得,,所以.故選:B【2022年全國(guó)乙卷】4.雙曲線C的兩個(gè)焦點(diǎn)為,以C的實(shí)軸為直徑的圓記為D,過(guò)作D的切線與C交于M,N兩點(diǎn),且,則C的離心率為(

)A. B. C. D.【答案】AC【解析】【分析】依題意不妨設(shè)雙曲線焦點(diǎn)在軸,設(shè)過(guò)作圓的切線切點(diǎn)為,利用正弦定理結(jié)合三角變換、雙曲線的定義得到或,即可得解,注意就在雙支上還是在單支上分類(lèi)討論.【詳解】方法一(幾何法,雙曲線定義的應(yīng)用)情況一M、N在雙曲線的同一支,依題意不妨設(shè)雙曲線焦點(diǎn)在軸,設(shè)過(guò)作圓的切線切點(diǎn)為B,所以,因?yàn)?,所以在雙曲線的左支,,,,設(shè),由即,則,選A情況二若M、N在雙曲線的兩支,因?yàn)?,所以在雙曲線的右支,所以,,,設(shè),由,即,則,所以,即,所以雙曲線的離心率選C方法二(答案回代法)特值雙曲線,過(guò)且與圓相切的一條直線為,兩交點(diǎn)都在左支,,,則,特值雙曲線,過(guò)且與圓相切的一條直線為,兩交點(diǎn)在左右兩支,在右支,,,則,解法三:依題意不妨設(shè)雙曲線焦點(diǎn)在軸,設(shè)過(guò)作圓的切線切點(diǎn)為,若分別在左右支,因?yàn)椋遥栽陔p曲線的右支,又,,,設(shè),,在中,有,故即,所以,而,,,故,代入整理得到,即,所以雙曲線的離心率若均在左支上,同理有,其中為鈍角,故,故即,代入,,,整理得到:,故,故,故選:AC.【2021年甲卷文科】5.點(diǎn)到雙曲線的一條漸近線的距離為(

)A. B. C. D.【答案】A【解析】【分析】首先確定漸近線方程,然后利用點(diǎn)到直線距離公式求得點(diǎn)到一條漸近線的距離即可.【詳解】由題意可知,雙曲線的漸近線方程為:,即,結(jié)合對(duì)稱(chēng)性,不妨考慮點(diǎn)到直線的距離:.故選:A.【2021年乙卷文科】6.設(shè)B是橢圓的上頂點(diǎn),點(diǎn)P在C上,則的最大值為(

)A. B. C. D.2【答案】A【解析】【分析】設(shè)點(diǎn),由依題意可知,,,再根據(jù)兩點(diǎn)間的距離公式得到,然后消元,即可利用二次函數(shù)的性質(zhì)求出最大值.【詳解】設(shè)點(diǎn),因?yàn)?,,所以,而,所以?dāng)時(shí),的最大值為.故選:A.【點(diǎn)睛】本題解題關(guān)鍵是熟悉橢圓的簡(jiǎn)單幾何性質(zhì),由兩點(diǎn)間的距離公式,并利用消元思想以及二次函數(shù)的性質(zhì)即可解出.易錯(cuò)點(diǎn)是容易誤認(rèn)為短軸的相對(duì)端點(diǎn)是橢圓上到上定點(diǎn)B最遠(yuǎn)的點(diǎn),或者認(rèn)為是橢圓的長(zhǎng)軸的端點(diǎn)到短軸的端點(diǎn)距離最大,這些認(rèn)識(shí)是錯(cuò)誤的,要注意將距離的平方表示為二次函數(shù)后,自變量的取值范圍是一個(gè)閉區(qū)間,而不是全體實(shí)數(shù)上求最值..【2021年乙卷理科】7.設(shè)是橢圓的上頂點(diǎn),若上的任意一點(diǎn)都滿足,則的離心率的取值范圍是(

)A. B. C. D.【答案】C【解析】【分析】設(shè),由,根據(jù)兩點(diǎn)間的距離公式表示出,分類(lèi)討論求出的最大值,再構(gòu)建齊次不等式,解出即可.【詳解】設(shè),由,因?yàn)?,,所以,因?yàn)椋?dāng),即時(shí),,即,符合題意,由可得,即;當(dāng),即時(shí),,即,化簡(jiǎn)得,,顯然該不等式不成立.故選:C.【點(diǎn)睛】本題解題關(guān)鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調(diào)性從而確定最值.【2021年新高考1卷】8.已知,是橢圓:的兩個(gè)焦點(diǎn),點(diǎn)在上,則的最大值為(

)A.13 B.12 C.9 D.6【答案】C【解析】【分析】本題通過(guò)利用橢圓定義得到,借助基本不等式即可得到答案.【詳解】由題,,則,所以(當(dāng)且僅當(dāng)時(shí),等號(hào)成立).故選:C.【點(diǎn)睛】【2021年新高考2卷】9.拋物線的焦點(diǎn)到直線的距離為,則(

)A.1 B.2 C. D.4【答案】B【解析】【分析】首先確定拋物線的焦點(diǎn)坐標(biāo),然后結(jié)合點(diǎn)到直線距離公式可得的值.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,其到直線的距離:,解得:(舍去).故選:B.【2020年新課標(biāo)1卷理科】10.已知A為拋物線C:y2=2px(p>0)上一點(diǎn),點(diǎn)A到C的焦點(diǎn)的距離為12,到y(tǒng)軸的距離為9,則p=(

)A.2 B.3 C.6 D.9【答案】C【解析】【分析】利用拋物線的定義建立方程即可得到答案.【詳解】設(shè)拋物線的焦點(diǎn)為F,由拋物線的定義知,即,解得.故選:C.【點(diǎn)晴】本題主要考查利用拋物線的定義計(jì)算焦半徑,考查學(xué)生轉(zhuǎn)化與化歸思想,是一道容易題.【2020年新課標(biāo)1卷理科】11.已知⊙M:,直線:,為上的動(dòng)點(diǎn),過(guò)點(diǎn)作⊙M的切線,切點(diǎn)為,當(dāng)最小時(shí),直線的方程為(

)A. B. C. D.【答案】D【解析】【分析】由題意可判斷直線與圓相離,根據(jù)圓的知識(shí)可知,四點(diǎn)共圓,且,根據(jù)可知,當(dāng)直線時(shí),最小,求出以為直徑的圓的方程,根據(jù)圓系的知識(shí)即可求出直線的方程.【詳解】圓的方程可化為,點(diǎn)到直線的距離為,所以直線與圓相離.依圓的知識(shí)可知,四點(diǎn)四點(diǎn)共圓,且,所以,而,當(dāng)直線時(shí),,,此時(shí)最小.∴即,由解得,.所以以為直徑的圓的方程為,即,兩圓的方程相減可得:,即為直線的方程.故選:D.【點(diǎn)睛】本題主要考查直線與圓,圓與圓的位置關(guān)系的應(yīng)用,以及圓的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于中檔題.【2020年新課標(biāo)1卷文科】12.已知圓,過(guò)點(diǎn)(1,2)的直線被該圓所截得的弦的長(zhǎng)度的最小值為(

)A.1 B.2C.3 D.4【答案】B【解析】【分析】當(dāng)直線和圓心與點(diǎn)的連線垂直時(shí),所求的弦長(zhǎng)最短,即可得出結(jié)論.【詳解】圓化為,所以圓心坐標(biāo)為,半徑為,設(shè),當(dāng)過(guò)點(diǎn)的直線和直線垂直時(shí),圓心到過(guò)點(diǎn)的直線的距離最大,所求的弦長(zhǎng)最短,此時(shí)根據(jù)弦長(zhǎng)公式得最小值為.故選:B.【點(diǎn)睛】本題考查圓的簡(jiǎn)單幾何性質(zhì),以及幾何法求弦長(zhǎng),屬于基礎(chǔ)題.【2020年新課標(biāo)1卷文科】13.設(shè)是雙曲線的兩個(gè)焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在上且,則的面積為(

)A. B.3 C. D.2【答案】B【解析】【分析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計(jì)算即可.【詳解】由已知,不妨設(shè),則,因?yàn)?,所以點(diǎn)在以為直徑的圓上,即是以P為直角頂點(diǎn)的直角三角形,故,即,又,所以,解得,所以故選:B【點(diǎn)晴】本題考查雙曲線中焦點(diǎn)三角形面積的計(jì)算問(wèn)題,涉及到雙曲線的定義,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.【2020年新課標(biāo)2卷理科】14.若過(guò)點(diǎn)(2,1)的圓與兩坐標(biāo)軸都相切,則圓心到直線的距離為(

)A. B. C. D.【答案】B【解析】【分析】由題意可知圓心在第一象限,設(shè)圓心的坐標(biāo)為,可得圓的半徑為,寫(xiě)出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)在圓上,求得實(shí)數(shù)的值,利用點(diǎn)到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點(diǎn)在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標(biāo)為,則圓的半徑為,圓的標(biāo)準(zhǔn)方程為.由題意可得,可得,解得或,所以圓心的坐標(biāo)為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點(diǎn)睛】本題考查圓心到直線距離的計(jì)算,求出圓的方程是解題的關(guān)鍵,考查計(jì)算能力,屬于中等題.【2020年新課標(biāo)2卷理科】15.設(shè)為坐標(biāo)原點(diǎn),直線與雙曲線的兩條漸近線分別交于兩點(diǎn),若的面積為8,則的焦距的最小值為(

)A.4 B.8 C.16 D.32【答案】B【解析】【分析】因?yàn)椋傻秒p曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點(diǎn)坐標(biāo),即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點(diǎn)不妨設(shè)為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當(dāng)且僅當(dāng)取等號(hào)的焦距的最小值:故選:B.【點(diǎn)睛】本題主要考查了求雙曲線焦距的最值問(wèn)題,解題關(guān)鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時(shí),要檢驗(yàn)等號(hào)是否成立,考查了分析能力和計(jì)算能力,屬于中檔題.【2020年新課標(biāo)3卷理科】16.設(shè)為坐標(biāo)原點(diǎn),直線與拋物線C:交于,兩點(diǎn),若,則的焦點(diǎn)坐標(biāo)為(

)A. B. C. D.【答案】B【解析】【分析】根據(jù)題中所給的條件,結(jié)合拋物線的對(duì)稱(chēng)性,可知,從而可以確定出點(diǎn)的坐標(biāo),代入方程求得的值,進(jìn)而求得其焦點(diǎn)坐標(biāo),得到結(jié)果.【詳解】因?yàn)橹本€與拋物線交于兩點(diǎn),且,根據(jù)拋物線的對(duì)稱(chēng)性可以確定,所以,代入拋物線方程,求得,所以其焦點(diǎn)坐標(biāo)為,故選:B.【點(diǎn)睛】該題考查的是有關(guān)圓錐曲線的問(wèn)題,涉及到的知識(shí)點(diǎn)有直線與拋物線的交點(diǎn),拋物線的對(duì)稱(chēng)性,點(diǎn)在拋物線上的條件,拋物線的焦點(diǎn)坐標(biāo),屬于簡(jiǎn)單題目.【2020年新課標(biāo)3卷理科】17.設(shè)雙曲線C:(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為.P是C上一點(diǎn),且F1P⊥F2P.若△PF1F2的面積為4,則a=(

)A.1 B.2 C.4 D.8【答案】A【解析】【分析】根據(jù)雙曲線的定義,三角形面積公式,勾股定理,結(jié)合離心率公式,即可得出答案.【詳解】,,根據(jù)雙曲線的定義可得,,即,,,,即,解得,故選:A.【點(diǎn)睛】本題主要考查了雙曲線的性質(zhì)以及定義的應(yīng)用,涉及了勾股定理,三角形面積公式的應(yīng)用,屬于中檔題.【2020年新課標(biāo)3卷文科】18.在平面內(nèi),A,B是兩個(gè)定點(diǎn),C是動(dòng)點(diǎn),若,則點(diǎn)C的軌跡為(

)A.圓 B.橢圓 C.拋物線 D.直線【答案】A【解析】【分析】首先建立平面直角坐標(biāo)系,然后結(jié)合數(shù)量積的定義求解其軌跡方程即可.【詳解】設(shè),以AB中點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則:,設(shè),可得:,從而:,結(jié)合題意可得:,整理可得:,即點(diǎn)C的軌跡是以AB中點(diǎn)為圓心,為半徑的圓.故選:A.【點(diǎn)睛】本題主要考查平面向量及其數(shù)量積的坐標(biāo)運(yùn)算,軌跡方程的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.【2020年新課標(biāo)3卷文科】19.點(diǎn)(0,﹣1)到直線距離的最大值為(

)A.1 B. C. D.2【答案】B【解析】【分析】首先根據(jù)直線方程判斷出直線過(guò)定點(diǎn),設(shè),當(dāng)直線與垂直時(shí),點(diǎn)到直線距離最大,即可求得結(jié)果.【詳解】由可知直線過(guò)定點(diǎn),設(shè),當(dāng)直線與垂直時(shí),點(diǎn)到直線距離最大,即為.故選:B.【點(diǎn)睛】該題考查的是有關(guān)解析幾何初步的問(wèn)題,涉及到的知識(shí)點(diǎn)有直線過(guò)定點(diǎn)問(wèn)題,利用幾何性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.【2022年新高考1卷】20.已知O為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,過(guò)點(diǎn)的直線交C于P,Q兩點(diǎn),則(

)A.C的準(zhǔn)線為 B.直線AB與C相切C. D.【答案】BCD【解析】【分析】求出拋物線方程可判斷A,聯(lián)立AB與拋物線的方程求交點(diǎn)可判斷B,利用距離公式及弦長(zhǎng)公式可判斷C、D.【詳解】將點(diǎn)的代入拋物線方程得,所以拋物線方程為,故準(zhǔn)線方程為,A錯(cuò)誤;,所以直線的方程為,聯(lián)立,可得,解得,故B正確;設(shè)過(guò)的直線為,若直線與軸重合,則直線與拋物線只有一個(gè)交點(diǎn),所以,直線的斜率存在,設(shè)其方程為,,聯(lián)立,得,所以,所以或,,又,,所以,故C正確;因?yàn)椋?,所以,而,故D正確.故選:BCD【2022年新高考2卷】21.已知O為坐標(biāo)原點(diǎn),過(guò)拋物線焦點(diǎn)F的直線與C交于A,B兩點(diǎn),其中A在第一象限,點(diǎn),若,則(

)A.直線的斜率為 B.C. D.【答案】ACD【解析】【分析】由及拋物線方程求得,再由斜率公式即可判斷A選項(xiàng);表示出直線的方程,聯(lián)立拋物線求得,即可求出判斷B選項(xiàng);由拋物線的定義求出即可判斷C選項(xiàng);由,求得,為鈍角即可判斷D選項(xiàng).【詳解】對(duì)于A,易得,由可得點(diǎn)在的垂直平分線上,則點(diǎn)橫坐標(biāo)為,代入拋物線可得,則,則直線的斜率為,A正確;對(duì)于B,由斜率為可得直線的方程為,聯(lián)立拋物線方程得,設(shè),則,則,代入拋物線得,解得,則,則,B錯(cuò)誤;對(duì)于C,由拋物線定義知:,C正確;對(duì)于D,,則為鈍角,又,則為鈍角,又,則,D正確.故選:ACD.【2021年新高考1卷】22.已知點(diǎn)在圓上,點(diǎn)、,則(

)A.點(diǎn)到直線的距離小于B.點(diǎn)到直線的距離大于C.當(dāng)最小時(shí),D.當(dāng)最大時(shí),【答案】ACD【解析】【分析】計(jì)算出圓心到直線的距離,可得出點(diǎn)到直線的距離的取值范圍,可判斷AB選項(xiàng)的正誤;分析可知,當(dāng)最大或最小時(shí),與圓相切,利用勾股定理可判斷CD選項(xiàng)的正誤.【詳解】圓的圓心為,半徑為,直線的方程為,即,圓心到直線的距離為,所以,點(diǎn)到直線的距離的最小值為,最大值為,A選項(xiàng)正確,B選項(xiàng)錯(cuò)誤;如下圖所示:當(dāng)最大或最小時(shí),與圓相切,連接、,可知,,,由勾股定理可得,CD選項(xiàng)正確.故選:ACD.【點(diǎn)睛】結(jié)論點(diǎn)睛:若直線與半徑為的圓相離,圓心到直線的距離為,則圓上一點(diǎn)到直線的距離的取值范圍是.【2021年新高考2卷】23.已知直線與圓,點(diǎn),則下列說(shuō)法正確的是(

)A.若點(diǎn)A在圓C上,則直線l與圓C相切 B.若點(diǎn)A在圓C內(nèi),則直線l與圓C相離C.若點(diǎn)A在圓C外,則直線l與圓C相離 D.若點(diǎn)A在直線l上,則直線l與圓C相切【答案】ABD【解析】【分析】轉(zhuǎn)化點(diǎn)與圓、點(diǎn)與直線的位置關(guān)系為的大小關(guān)系,結(jié)合點(diǎn)到直線的距離及直線與圓的位置關(guān)系即可得解.【詳解】圓心到直線l的距離,若點(diǎn)在圓C上,則,所以,則直線l與圓C相切,故A正確;若點(diǎn)在圓C內(nèi),則,所以,則直線l與圓C相離,故B正確;若點(diǎn)在圓C外,則,所以,則直線l與圓C相交,故C錯(cuò)誤;若點(diǎn)在直線l上,則即,所以,直線l與圓C相切,故D正確.故選:ABD.【2020年新高考1卷(山東卷)】24.已知曲線.(

)A.若m>n>0,則C是橢圓,其焦點(diǎn)在y軸上B.若m=n>0,則C是圓,其半徑為C.若mn<0,則C是雙曲線,其漸近線方程為D.若m=0,n>0,則C是兩條直線【答案】ACD【解析】【分析】結(jié)合選項(xiàng)進(jìn)行逐項(xiàng)分析求解,時(shí)表示橢圓,時(shí)表示圓,時(shí)表示雙曲線,時(shí)表示兩條直線.【詳解】對(duì)于A,若,則可化為,因?yàn)?,所以,即曲線表示焦點(diǎn)在軸上的橢圓,故A正確;對(duì)于B,若,則可化為,此時(shí)曲線表示圓心在原點(diǎn),半徑為的圓,故B不正確;對(duì)于C,若,則可化為,此時(shí)曲線表示雙曲線,由可得,故C正確;對(duì)于D,若,則可化為,,此時(shí)曲線表示平行于軸的兩條直線,故D正確;故選:ACD.【點(diǎn)睛】本題主要考查曲線方程的特征,熟知常見(jiàn)曲線方程之間的區(qū)別是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).【2022年全國(guó)甲卷】25.設(shè)點(diǎn)M在直線上,點(diǎn)和均在上,則的方程為_(kāi)_____________.【答案】【解析】【分析】設(shè)出點(diǎn)M的坐標(biāo),利用和均在上,求得圓心及半徑,即可得圓的方程.【詳解】方法一:(三點(diǎn)共圓)∵點(diǎn)M在直線上,∴設(shè)點(diǎn)M為,又因?yàn)辄c(diǎn)和均在上,∴點(diǎn)M到兩點(diǎn)的距離相等且為半徑R,∴,,解得,∴,,的方程為.故答案為:方法二:(圓的幾何性質(zhì))由題可知,M是以(3,0)和(0,1)為端點(diǎn)的線段垂直平分線y=3x-4與直線的交點(diǎn)(1,-1).,的方程為.故答案為:【2022年全國(guó)甲卷】26.記雙曲線的離心率為e,寫(xiě)出滿足條件“直線與C無(wú)公共點(diǎn)”的e的一個(gè)值______________.【答案】2(滿足皆可)【解析】【分析】根據(jù)題干信息,只需雙曲線漸近線中即可求得滿足要求的e值.【詳解】解:,所以C的漸近線方程為,結(jié)合漸近線的特點(diǎn),只需,即,可滿足條件“直線與C無(wú)公共點(diǎn)”所以,又因?yàn)?,所以,故答案為?(滿足皆可)【2022年全國(guó)甲卷】27.若雙曲線的漸近線與圓相切,則_________.【答案】【解析】【分析】首先求出雙曲線的漸近線方程,再將圓的方程化為標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,依題意圓心到直線的距離等于圓的半徑,即可得到方程,解得即可.【詳解】解:雙曲線的漸近線為,即,不妨取,圓,即,所以圓心為,半徑,依題意圓心到漸近線的距離,解得或(舍去).故答案為:.【2022年全國(guó)乙卷】28.過(guò)四點(diǎn)中的三點(diǎn)的一個(gè)圓的方程為_(kāi)___________.【答案】或或或.【解析】【分析】法一:設(shè)圓的方程為,根據(jù)所選點(diǎn)的坐標(biāo),得到方程組,解得即可;【詳解】[法一]:圓的一般方程依題意設(shè)圓的方程為,(1)若過(guò),,,則,解得,所以圓的方程為,即;(2)若過(guò),,,則,解得,所以圓的方程為,即;(3)若過(guò),,,則,解得,所以圓的方程為,即;(4)若過(guò),,,則,解得,所以圓的方程為,即;故答案為:或或或.[法二]:【最優(yōu)解】圓的標(biāo)準(zhǔn)方程(三點(diǎn)中的兩條中垂線的交點(diǎn)為圓心)設(shè)(1)若圓過(guò)三點(diǎn),圓心在直線,設(shè)圓心坐標(biāo)為,則,所以圓的方程為;(2)若圓過(guò)三點(diǎn),設(shè)圓心坐標(biāo)為,則,所以圓的方程為;(3)若圓過(guò)三點(diǎn),則線段的中垂線方程為,線段的中垂線方程為,聯(lián)立得,所以圓的方程為;(4)若圓過(guò)三點(diǎn),則線段的中垂線方程為,線段中垂線方程為,聯(lián)立得,所以圓的方程為.故答案為:或或或.【整體點(diǎn)評(píng)】法一;利用圓過(guò)三個(gè)點(diǎn),設(shè)圓的一般方程,解三元一次方程組,思想簡(jiǎn)單,運(yùn)算稍繁;法二;利用圓的幾何性質(zhì),先求出圓心再求半徑,運(yùn)算稍簡(jiǎn)潔,是該題的最優(yōu)解.【2022年新高考1卷】29.寫(xiě)出與圓和都相切的一條直線的方程________________.【答案】或或【解析】【分析】先判斷兩圓位置關(guān)系,分情況討論即可.【詳解】解:方法一:顯然直線的斜率不為0,不妨設(shè)直線方程為,于是,故①,于是或,再結(jié)合①解得或或,所以直線方程有三條,分別為,,填一條即可方法二:設(shè)圓的圓心,半徑為,圓的圓心,半徑,則,因此兩圓外切,由圖像可知,共有三條直線符合條件,顯然符合題意;又由方程和相減可得方程,即為過(guò)兩圓公共切點(diǎn)的切線方程,又易知兩圓圓心所在直線OC的方程為,直線OC與直線的交點(diǎn)為,設(shè)過(guò)該點(diǎn)的直線為,則,解得,從而該切線的方程為填一條即可方法三:圓的圓心為,半徑為,圓的圓心為,半徑為,兩圓圓心距為,等于兩圓半徑之和,故兩圓外切,如圖,當(dāng)切線為l時(shí),因?yàn)?,所以,設(shè)方程為O到l的距離,解得,所以l的方程為,當(dāng)切線為m時(shí),設(shè)直線方程為,其中,,由題意,解得,當(dāng)切線為n時(shí),易知切線方程為,故答案為:或或.【2022年新高考1卷】30.已知橢圓,C的上頂點(diǎn)為A,兩個(gè)焦點(diǎn)為,,離心率為.過(guò)且垂直于的直線與C交于D,E兩點(diǎn),,則的周長(zhǎng)是________________.【答案】13【解析】【分析】利用離心率得到橢圓的方程為,根據(jù)離心率得到直線的斜率,進(jìn)而利用直線的垂直關(guān)系得到直線的斜率,寫(xiě)出直線的方程:,代入橢圓方程,整理化簡(jiǎn)得到:,利用弦長(zhǎng)公式求得,得,根據(jù)對(duì)稱(chēng)性將的周長(zhǎng)轉(zhuǎn)化為的周長(zhǎng),利用橢圓的定義得到周長(zhǎng)為.【詳解】∵橢圓的離心率為,∴,∴,∴橢圓的方程為,不妨設(shè)左焦點(diǎn)為,右焦點(diǎn)為,如圖所示,∵,∴,∴為正三角形,∵過(guò)且垂直于的直線與C交于D,E兩點(diǎn),為線段的垂直平分線,∴直線的斜率為,斜率倒數(shù)為,直線的方程:,代入橢圓方程,整理化簡(jiǎn)得到:,判別式,∴,∴,得,∵為線段的垂直平分線,根據(jù)對(duì)稱(chēng)性,,∴的周長(zhǎng)等于的周長(zhǎng),利用橢圓的定義得到周長(zhǎng)為.故答案為:13.【2022年新高考2卷】31.設(shè)點(diǎn),若直線關(guān)于對(duì)稱(chēng)的直線與圓有公共點(diǎn),則a的取值范圍是________.【答案】【解析】【分析】首先求出點(diǎn)關(guān)于對(duì)稱(chēng)點(diǎn)的坐標(biāo),即可得到直線的方程,根據(jù)圓心到直線的距離小于等于半徑得到不等式,解得即可;【詳解】解:關(guān)于對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為,在直線上,所以所在直線即為直線,所以直線為,即;圓,圓心,半徑,依題意圓心到直線的距離,即,解得,即;故答案為:【2022年新高考2卷】32.已知直線l與橢圓在第一象限交于A,B兩點(diǎn),l與x軸,y軸分別交于M,N兩點(diǎn),且,則l的方程為_(kāi)__________.【答案】【解析】【分析】令的中點(diǎn)為,設(shè),,利用點(diǎn)差法得到,設(shè)直線,,,求出、的坐標(biāo),再根據(jù)求出、,即可得解;【詳解】解法一:(弦中點(diǎn)問(wèn)題:點(diǎn)差法)令的中點(diǎn)為,設(shè),,利用點(diǎn)差法得到,設(shè)直線,,,求出、的坐標(biāo),再根據(jù)求出、,即可得解;解:令的中點(diǎn)為,因?yàn)椋?,設(shè),,則,,所以,即所以,即,設(shè)直線,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直線,即;故答案為:解法二:(直線與圓錐曲線相交的常規(guī)方法)解:由題意知,點(diǎn)既為線段的中點(diǎn)又是線段MN的中點(diǎn),設(shè),,設(shè)直線,,,則,,,因?yàn)?,所以?lián)立直線AB與橢圓方程得消掉y得其中,∴AB中點(diǎn)E的橫坐標(biāo),又,∴∵,,∴,又,解得m=2所以直線,即解法三:令的中點(diǎn)為,因?yàn)?,所以,設(shè),,則,,所以,即所以,即,設(shè)直線,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直線,即;故答案為:【2021年甲卷文科】33.已知為橢圓C:的兩個(gè)焦點(diǎn),P,Q為C上關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),且,則四邊形的面積為_(kāi)_______.【答案】【解析】【分析】根據(jù)已知可得,設(shè),利用勾股定理結(jié)合,求出,四邊形面積等于,即可求解.【詳解】因?yàn)闉樯详P(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),且,所以四邊形為矩形,設(shè),則,所以,,即四邊形面積等于.故答案為:.【2021年乙卷文科】34.雙曲線的右焦點(diǎn)到直線的距離為_(kāi)_______.【答案】【解析】【分析】先求出右焦點(diǎn)坐標(biāo),再利用點(diǎn)到直線的距離公式求解.【詳解】由已知,,所以雙曲線的右焦點(diǎn)為,所以右焦點(diǎn)到直線的距離為.故答案為:【2021年乙卷理科】35.已知雙曲線的一條漸近線為,則C的焦距為_(kāi)________.【答案】4【解析】【分析】將漸近線方程化成斜截式,得出的關(guān)系,再結(jié)合雙曲線中對(duì)應(yīng)關(guān)系,聯(lián)立求解,再由關(guān)系式求得,即可求解.【詳解】由漸近線方程化簡(jiǎn)得,即,同時(shí)平方得,又雙曲線中,故,解得(舍去),,故焦距.故答案為:4.【點(diǎn)睛】本題為基礎(chǔ)題,考查由漸近線求解雙曲線中參數(shù),焦距,正確計(jì)算并聯(lián)立關(guān)系式求解是關(guān)鍵.【2021年新高考1卷】36.已知為坐標(biāo)原點(diǎn),拋物線:()的焦點(diǎn)為,為上一

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論