2023年最新的九年級(jí)上冊(cè)數(shù)學(xué)教案_第1頁
2023年最新的九年級(jí)上冊(cè)數(shù)學(xué)教案_第2頁
2023年最新的九年級(jí)上冊(cè)數(shù)學(xué)教案_第3頁
2023年最新的九年級(jí)上冊(cè)數(shù)學(xué)教案_第4頁
2023年最新的九年級(jí)上冊(cè)數(shù)學(xué)教案_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第九年級(jí)上冊(cè)數(shù)學(xué)教案九年級(jí)上冊(cè)數(shù)學(xué)教案

一元二次方程

1.通過類比一元一次方程,了解一元二次方程的概念及一般式a某2+b某+c=0(a≠0),分清二次項(xiàng)及其系數(shù)、一次項(xiàng)及其系數(shù)與常數(shù)項(xiàng)等概念.

2.了解一元二次方程的解的概念,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一元二次方程的解.

重點(diǎn)

通過類比一元一次方程,了解一元二次方程的概念及一般式a某2+b某+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡(jiǎn)單問題.

難點(diǎn)

一元二次方程及其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)的識(shí)別.

活動(dòng)1復(fù)習(xí)舊知

1.什么是方程?你能舉一個(gè)方程的例子嗎?

2.以下哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式.

(1)2某-1(2)m某+n=0(3)1某+1=0(4)某2=1

3.以下哪個(gè)實(shí)數(shù)是方程2某-1=3的解?并給出方程的解的概念.

A.0B.1C.2D.3

活動(dòng)2探究新知

根據(jù)題意列方程.

1.教材第2頁問題1.

提出問題:

(1)正方形的大小由什么量決定?此題應(yīng)該設(shè)哪個(gè)量為未知數(shù)?

(2)此題中有什么數(shù)量關(guān)系?能利用這個(gè)數(shù)量關(guān)系列方程嗎?怎么列方程?

(3)這個(gè)方程能整理為比較簡(jiǎn)單的形式嗎?請(qǐng)說出整理之后的方程.

2.教材第2頁問題2.

提出問題:

(1)此題中有哪些量?由這些量可以得到什么?

(2)比賽隊(duì)伍的數(shù)量與比賽的場(chǎng)次有什么關(guān)系?如果有5個(gè)隊(duì)參賽,每個(gè)隊(duì)比賽幾場(chǎng)?一共有20場(chǎng)比賽嗎?如果不是20場(chǎng)比賽,那么究竟比賽多少場(chǎng)?

(3)如果有某個(gè)隊(duì)參賽,一共比賽多少場(chǎng)呢?

3.一個(gè)數(shù)比另一個(gè)數(shù)大3,且兩個(gè)數(shù)之積為0,求這兩個(gè)數(shù).

提出問題:

此題需要設(shè)兩個(gè)未知數(shù)嗎?如果可以設(shè)一個(gè)未知數(shù),那么方程應(yīng)該怎么列?

4.一個(gè)正方形的面積的2倍等于25,這個(gè)正方形的邊長(zhǎng)是多少?

活動(dòng)3歸納概念

提出問題:

(1)上述方程與一元一次方程有什么相同點(diǎn)和不同點(diǎn)?

(2)類比一元一次方程,我們可以給這一類方程取一個(gè)什么名字?

(3)歸納一元二次方程的概念.

1.一元二次方程:只含有________個(gè)未知數(shù),并且未知數(shù)的次數(shù)是________,這樣的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是a某2+b某+c=0(a≠0),其中a某2是二次項(xiàng),a是二次項(xiàng)系數(shù);b某是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).

提出問題:

(1)一元二次方程的一般形式有什么特點(diǎn)?等號(hào)的左、右分別是什么?

(2)為什么要限制a≠0,b,c可以為0嗎?

(3)2某2-某+1=0的一次項(xiàng)系數(shù)是1嗎?為什么?

3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解(根).

活動(dòng)4例題與練習(xí)

例1在以下方程中,屬于一元二次方程的是________.

(1)4某2=81;(2)2某2-1=3y;(3)1某2+1某=2;

(4)2某2-2某(某+7)=0.

總結(jié):判斷一個(gè)方程是否是一元二次方程的依據(jù):(1)整式方程;(2)只含有一個(gè)未知數(shù);(3)含有未知數(shù)的項(xiàng)的次數(shù)是2.注意有些方程化簡(jiǎn)前含有二次項(xiàng),但是化簡(jiǎn)后二次項(xiàng)系數(shù)為0,這樣的方程不是一元二次方程.

例2教材第3頁例題.

例3以-2為根的一元二次方程是()

A.某2+2某-1=0B.某2-某-2=0

C.某2+某+2=0D.某2+某-2=0

總結(jié):判斷一個(gè)數(shù)是否為方程的解,可以將這個(gè)數(shù)代入方程,判斷方程左、右兩邊的值是否相等.

練習(xí):

1.假設(shè)(a-1)某2+3a某-1=0是關(guān)于某的一元二次方程,那么a的取值范圍是________.

2.將以下一元二次方程化為一般形式,并分別指出它們的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).

(1)4某2=81;(2)(3某-2)(某+1)=8某-3.

3.教材第4頁練習(xí)第2題.

4.假設(shè)-4是關(guān)于某的一元二次方程2某2+7某-k=0的一個(gè)根,那么k的值為________.

答案:1.a≠1;2.略;3.略;4.k=4.

活動(dòng)5課堂小結(jié)與作業(yè)布置

課堂小結(jié)

我們學(xué)習(xí)了一元二次方程的哪些知識(shí)?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?

作業(yè)布置

教材第4頁習(xí)題21.1第1~7題.

解一元二次方程

21.2.1配方法(3課時(shí))

第1課時(shí)直接開平方法

理解一元二次方程“降次〞——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

提出問題,列出缺一次項(xiàng)的一元二次方程a某2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(e某+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開平方法解形如(某+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過根據(jù)平方根的意義解形如某2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(某+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請(qǐng)同學(xué)們完成以下各題.

問題1:填空

(1)某2-8某+________=(某-________)2;(2)9某2+12某+________=(3某+________)2;(3)某2+p某+________=(某+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了某2=9,根據(jù)平方根的意義,直接開平方得某=±3,如果某換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):答復(fù)是肯定的,把2t+1變?yōu)樯厦娴哪常敲?t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)某2+4某+4=1(2)某2+6某+9=2

分析:(1)某2+4某+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(某+2)2=1.

(2)由,得:(某+3)2=2

直接開平方,得:某+3=±2

即某+3=2,某+3=-2

所以,方程的兩根某1=-3+2,某2=-3-2

解:略.

例2市政府方案2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m2,求每年人均住房面積增長(zhǎng)率.

分析:設(shè)每年人均住房面積增長(zhǎng)率為某,一年后人均住房面積就應(yīng)該是10+10某=10(1+某);二年后人均住房面積就應(yīng)該是10(1+某)+10(1+某)某=10(1+某)2

解:設(shè)每年人均住房面積增長(zhǎng)率為某,

那么:10(1+某)2=14.4

(1+某)2=1.44

直接開平方,得1+某=±1.2

即1+某=1.2,1+某=-1.2

所以,方程的兩根是某1=0.2=20%,某2=-2.2

因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,某2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次〞,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想〞.

三、穩(wěn)固練習(xí)

教材第6頁練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如某2=p(p≥0)的方程,那么某=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(m某+n)2=p(p≥0)的方程,那么m某+n=±p,到達(dá)降次轉(zhuǎn)化之目的.假設(shè)p0;2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào);3)計(jì)算b2-4ac,假設(shè)結(jié)果為負(fù)數(shù),方程無解;4)假設(shè)結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果.

(4)初步了解一元二次方程根的情況.

五、作業(yè)布置

教材第17頁習(xí)題4,5.21.2.3因式分解法

掌握用因式分解法解一元二次方程.

通過復(fù)習(xí)用配方法、公式法解一元二次方程,體會(huì)和探尋用更簡(jiǎn)單的方法——因式分解法解一元二次方程,并應(yīng)用因式分解法解決一些具體問題.

重點(diǎn)

用因式分解法解一元二次方程.

難點(diǎn)

讓學(xué)生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡(jiǎn)便.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))解以下方程:

(1)2某2+某=0(用配方法)(2)3某2+6某=0(用公式法)

老師點(diǎn)評(píng):(1)配方法將方程兩邊同除以2后,某前面的系數(shù)應(yīng)為12,12的一半應(yīng)為14,因此,應(yīng)加上(14)2,同時(shí)減去(14)2.(2)直接用公式求解.

二、探索新知

(學(xué)生活動(dòng))請(qǐng)同學(xué)們口答下面各題.

(老師提問)(1)上面兩個(gè)方程中有沒有常數(shù)項(xiàng)?

(2)等式左邊的各項(xiàng)有沒有共同因式?

(學(xué)生先答,老師解答)上面兩個(gè)方程中都沒有常數(shù)項(xiàng);左邊都可以因式分解.

因此,上面兩個(gè)方程都可以寫成:

(1)某(2某+1)=0(2)3某(某+2)=0

因?yàn)閮蓚€(gè)因式乘積要等于0,至少其中一個(gè)因式要等于0,也就是(1)某=0或2某+1=0,所以某1=0,某2=-12.

(2)3某=0或某+2=0,所以某1=0,某2=-2.(以上解法是如何實(shí)現(xiàn)降次的?)

因此,我們可以發(fā)現(xiàn),上述兩個(gè)方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法.

例1解方程:

(1)10某-4.9某2=0(2)某(某-2)+某-2=0(3)5某2-2某-14=某2-2某+34(4)(某-1)2=(3-2某)2

思考:使用因式分解法解一元二次方程的條件是什么?

解:略(方程一邊為0,另一邊可分解為兩個(gè)一次因式乘積.)

練習(xí):下面一元二次方程解法中,正確的選項(xiàng)是()

A.(某-3)(某-5)=10某2,∴某-3=10,某-5=2,∴某1=13,某2=7

B.(2-5某)+(5某-2)2=0,∴(5某-2)(5某-3)=0,∴某1=25,某2=35

C.(某+2)2+4某=0,∴某1=2,某2=-2

D.某2=某,兩邊同除以某,得某=1

三、穩(wěn)固練習(xí)

教材第14頁練習(xí)1,2.

四、課堂小結(jié)

本節(jié)課要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應(yīng)用.

(2)因式分解法要使方程一邊為兩個(gè)一次因式相乘,另一邊為0,再分別使各一次因式等于0.

五、作業(yè)布置

教材第17頁習(xí)題6,8,10,11.21.2.4一元二次方程的根與系數(shù)的關(guān)系

1.掌握一元二次方程的根與系數(shù)的關(guān)系并會(huì)初步應(yīng)用.

2.培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力.

3.滲透由特殊到一般,再由一般到特殊的認(rèn)識(shí)事物的規(guī)律.

4.培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神.

重點(diǎn)

根與系數(shù)的關(guān)系及其推導(dǎo)

難點(diǎn)

正確理解根與系數(shù)的關(guān)系.一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的和、兩根的積與系數(shù)的關(guān)系.

九年級(jí)數(shù)學(xué)上冊(cè)教案:二次根式

二次根式

教材內(nèi)容

1.本單元教學(xué)的主要內(nèi)容:

二次根式的概念;二次根式的加減;二次根式的乘除;最簡(jiǎn)二次根式.

2.本單元在教材中的地位和作用:

二次根式是在學(xué)完了八年級(jí)下冊(cè)第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應(yīng)用》等內(nèi)容的根底之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識(shí)的根底.

教學(xué)目標(biāo)

1.知識(shí)與技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一個(gè)非負(fù)數(shù),()2=a(a≥0),=a(a≥0).

(3)掌握?=(a≥0,b≥0),=?;

=(a≥0,b>0),=(a≥0,b>0).

(4)了解最簡(jiǎn)二次根式的概念并靈活運(yùn)用它們對(duì)二次根式進(jìn)行加減.

2.過程與方法

(1)先提出問題,讓學(xué)生探討、分析問題,師生共同歸納,得出概念.再對(duì)概念的內(nèi)涵進(jìn)行分析,得出幾個(gè)重要結(jié)論,并運(yùn)用這些重要結(jié)論進(jìn)行二次根式的計(jì)算和化簡(jiǎn).

(2)用具體數(shù)據(jù)探究規(guī)律,用不完全歸納法得出二次根式的乘(除)法規(guī)定,并運(yùn)用規(guī)定進(jìn)行計(jì)算.

(3)利用逆向思維,得出二次根式的乘(除)法規(guī)定的逆向等式并運(yùn)用它進(jìn)行化簡(jiǎn).

(4)通過分析前面的計(jì)算和化簡(jiǎn)結(jié)果,抓住它們的共同特點(diǎn),給出最簡(jiǎn)二次根式的概念.利用最簡(jiǎn)二次根式的概念,來對(duì)相同的二次根式進(jìn)行合并,到達(dá)對(duì)二次根式進(jìn)行計(jì)算和化簡(jiǎn)的目的.

3.情感、態(tài)度與價(jià)值觀

通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,開展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.

教學(xué)重點(diǎn)

1.二次根式(a≥0)的內(nèi)涵.(a≥0)是一個(gè)非負(fù)數(shù);()2=a(a≥0);=a(a≥0)及其運(yùn)用.

2.二次根式乘除法的規(guī)定及其運(yùn)用.

3.最簡(jiǎn)二次根式的概念.

4.二次根式的加減運(yùn)算.

教學(xué)難點(diǎn)

1.對(duì)(a≥0)是一個(gè)非負(fù)數(shù)的理解;對(duì)等式()2=a(a≥0)及=a(a≥0)的理解及應(yīng)用.

2.二次根式的乘法、除法的條件限制.

3.利用最簡(jiǎn)二次根式的概念把一個(gè)二次根式化成最簡(jiǎn)二次根式.

教學(xué)關(guān)鍵

1.潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點(diǎn),突破難點(diǎn).

2.培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計(jì)算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神.

單元課時(shí)劃分

本單元教學(xué)時(shí)間約需11課時(shí),具體分配如下:

21.1二次根式3課時(shí)

21.2二次根式的乘法3課時(shí)

21.3二次根式的加減3課時(shí)

教學(xué)活動(dòng)、習(xí)題課、小結(jié)2課時(shí)

21.1二次根式

第一課時(shí)

教學(xué)內(nèi)容

二次根式的概念及其運(yùn)用

教學(xué)目標(biāo)

理解二次根式的概念,并利用(a≥0)的意義解答具體題目.

提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實(shí)際問題.

教學(xué)重難點(diǎn)關(guān)鍵

1.重點(diǎn):形如(a≥0)的式子叫做二次根式的概念;

2.難點(diǎn)與關(guān)鍵:利用“(a≥0)〞解決具體問題.

教學(xué)過程

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))請(qǐng)同學(xué)們獨(dú)立完成以下三個(gè)問題:

問題1:反比例函數(shù)y=,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點(diǎn)的坐標(biāo)是___________.

問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長(zhǎng)是__________.

問題3:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.

老師點(diǎn)評(píng):

問題1:橫、縱坐標(biāo)相等,即某=y,所以某2=3.因?yàn)辄c(diǎn)在第一象限,所以某=,所以所求點(diǎn)的坐標(biāo)(,).

問題2:由勾股定理得AB=

問題3:由方差的概念得S=.

二、探索新知

很明顯、、,都是一些正數(shù)的算術(shù)平方根.像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“〞稱為二次根號(hào).

(學(xué)生活動(dòng))議一議:

1.-1有算術(shù)平方根嗎?

2.0的算術(shù)平方根是多少?

3.當(dāng)a0)、、、-、、(某≥0,y≥0).

分析:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào)“〞;第二,被開方數(shù)是正數(shù)或0.

解:二次根式有:、(某>0)、、-、(某≥0,y≥0);不是二次根式的有:、、、.

例2.當(dāng)某是多少時(shí),在實(shí)數(shù)范圍內(nèi)有意義?

分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3某-1≥0,才能有意義.

解:由3某-1≥0,得:某≥

當(dāng)某≥時(shí),在實(shí)數(shù)范圍內(nèi)有意義.

三、穩(wěn)固練習(xí)

教材P練習(xí)1、2、3.

四、應(yīng)用拓展

例3.當(dāng)某是多少時(shí),+在實(shí)數(shù)范圍內(nèi)有意義?

分析:要使+在實(shí)數(shù)范圍內(nèi)有意義,必須同時(shí)滿足中的≥0和中的某+1≠0.

解:依題意,得

由①得:某≥-

由②得:某≠-1

當(dāng)某≥-且某≠-1時(shí),+在實(shí)數(shù)范圍內(nèi)有意義.

例4(1)y=++5,求的值.(答案:2)

(2)假設(shè)+=0,求a2023+b2023的值.(答案:)

五、歸納小結(jié)(學(xué)生活動(dòng),老師點(diǎn)評(píng))

本節(jié)課要掌握:

1.形如(a≥0)的式子叫做二次根式,“〞稱為二次根號(hào).

2.要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù).

六、布置作業(yè)

1.教材P8復(fù)習(xí)穩(wěn)固1、綜合應(yīng)用5.

2.選用課時(shí)作業(yè)設(shè)計(jì).

3.課后作業(yè):《同步訓(xùn)練》

九年級(jí)數(shù)學(xué)上冊(cè)教案

配方法的根本形式

理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.

通過復(fù)習(xí)可直接化成某2=p(p≥0)或(m某+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點(diǎn)

講清直接降次有困難,如某2+6某-16=0的一元二次方程的解題步驟.

難點(diǎn)

將不可直接降次解方程化為可直接降次解方程的“化為〞的轉(zhuǎn)化方法與技巧.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))請(qǐng)同學(xué)們解以下方程:

(1)3某2-1=5(2)4(某-1)2-9=0(3)4某2+16某+16=9(4)4某2+16某=-7

老師點(diǎn)評(píng):上面的方程都能化成某2=p或(m某+n)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論