版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
關(guān)于數(shù)學排列與組合第一頁,共十七頁,2022年,8月28日從已知的3個不同元素中每次取出2個元素,并成一組問題2從已知的3
個不同元素中每次取出2個元素,按照一定的順序排成一列.問題1排列組合有順序無順序第二頁,共十七頁,2022年,8月28日
一般地,從n個不同元素中取出m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合.
排列與組合的概念有什么共同點與不同點?
概念講解組合定義:第三頁,共十七頁,2022年,8月28日組合定義:
一般地,從n個不同元素中取出m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合.排列定義:一般地,從n個不同元素中取出m(m≤n)
個元素,按照一定的順序排成一列,叫做從
n個不同元素中取出
m個元素的一個排列.共同點:都要“從n個不同元素中任取m個元素”不同點:排列與元素的順序有關(guān),而組合則與元素的順序無關(guān).概念講解第四頁,共十七頁,2022年,8月28日思考一:ab與ba是相同的排列還是相同的組合?為什么?思考二:兩個相同的排列有什么特點?兩個相同的組合呢?1)元素相同;2)元素排列順序相同.元素相同概念理解
構(gòu)造排列分成兩步完成,先取后排;而構(gòu)造組合就是其中一個步驟.思考三:組合與排列有聯(lián)系嗎?第五頁,共十七頁,2022年,8月28日1.從a,b,c三個不同的元素中取出兩個元素的所有組合分別是:ab,ac,bc
2.已知4個元素a,b,c,d
,寫出每次取出兩個元素的所有組合.abcd
bcd
cd
ab,ac,ad,bc,bd,cd(3個)(6個)概念理解第六頁,共十七頁,2022年,8月28日
從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號表示.如:從a,b,c三個不同的元素中取出兩個元素的所有組合個數(shù)是:如:已知4個元素a、b、c、d,寫出每次取出兩個元素的所有組合個數(shù)是:概念講解組合數(shù):注意:是一個數(shù),應該把它與“組合”區(qū)別開來.
第七頁,共十七頁,2022年,8月28日1.寫出從a,b,c,d
四個元素中任取三個元素的所有組合。abc,abd,acd,bcd.bcddcbacd練一練第八頁,共十七頁,2022年,8月28日組合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb不寫出所有組合,怎樣才能知道組合的種數(shù)?你發(fā)現(xiàn)了什么?第九頁,共十七頁,2022年,8月28日如何計算:第十頁,共十七頁,2022年,8月28日組合數(shù)公式
排列與組合是有區(qū)別的,但它們又有聯(lián)系.根據(jù)分步計數(shù)原理,得到:因此:
一般地,求從個不同元素中取出個元素的排列數(shù),可以分為以下2步:
第1步,先求出從這個不同元素中取出個元素的組合數(shù).
第2步,求每一個組合中個元素的全排列數(shù).
這里,且,這個公式叫做組合數(shù)公式.
概念講解第十一頁,共十七頁,2022年,8月28日組合數(shù)公式:
從n個不同元中取出m個元素的排列數(shù)概念講解第十二頁,共十七頁,2022年,8月28日例1計算:⑴
⑵
例題分析解(1):第十三頁,共十七頁,2022年,8月28日例1:一位教練的足球隊共有17名初級學員,他們中以前沒有一人參加過比賽。按照足球比賽規(guī)則,比賽時一個足球隊的上場隊員是11人。問:(1)這位教練從這17名學員中可以形成多少種學員上場方案?(2)如果在選出11名上場隊員時,還要確定其中的守門員,那么教練員有多少種方式做這件事情?解:由于上場學院沒有角色差異,所以可以形成的上場方案有(2)第一步從17人中選11名上場,第二步從11人中選擇1名守門員第十四頁,共十七頁,2022年,8月28日例2.(1)平面內(nèi)有10個點,以其中每2個點為端點的線段共有多少條?(2)平面內(nèi)有10個點,以其中每2個點為端點的有向線段共有多少條?解:(1)從10個點中選出2個點為端點的組合數(shù)(2)從10個點中選出2個點為端點的排列數(shù)第十五頁,共十七頁,2022年,8月28日例4:在100件產(chǎn)品中有98件合格品,2件次品。產(chǎn)品檢驗時,從100件產(chǎn)品中任意抽出3件。(1)一共有多少種不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少種?(3)抽出的3件中至少有1件是次品的抽法有多少種?(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度二零二五民間借貸合同風險評估與管理范本4篇
- 二零二五年度抹灰工程綠色施工與環(huán)保合同4篇
- 二零二五年度教育培訓場地租賃合同模板4篇
- 2025年度派駐技術(shù)支持服務合同模板范本4篇
- 2025年度個人二手房交易糾紛調(diào)解服務合同
- 2025年建筑工程施工項目經(jīng)理勞動合同模板2篇
- 二零二五醫(yī)療治療期間員工勞動合同補充協(xié)議3篇
- 二零二五年度新型農(nóng)村合作社勞動者勞動合同書
- 2025年度智能家居系統(tǒng)安裝與維護個人房屋裝修合同標準范本2篇
- 2024版預售房屋購買合同書
- GB/T 43650-2024野生動物及其制品DNA物種鑒定技術(shù)規(guī)程
- 2024年南京鐵道職業(yè)技術(shù)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 暴發(fā)性心肌炎查房
- 口腔醫(yī)學中的人工智能應用培訓課件
- 工程質(zhì)保金返還審批單
- 【可行性報告】2023年電動自行車項目可行性研究分析報告
- 五月天歌詞全集
- 商品退換貨申請表模板
- 實習單位鑒定表(模板)
- 數(shù)字媒體應用技術(shù)專業(yè)調(diào)研方案
- 2023年常州市新課結(jié)束考試九年級數(shù)學試卷(含答案)
評論
0/150
提交評論