第2章特殊三角形復習課-wwg課件_第1頁
第2章特殊三角形復習課-wwg課件_第2頁
第2章特殊三角形復習課-wwg課件_第3頁
第2章特殊三角形復習課-wwg課件_第4頁
第2章特殊三角形復習課-wwg課件_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第二章特殊三角形復習課第二章特殊三角形特殊三角形兩個銳角互余直角三角形斜邊上的中線等于斜邊的一半勾股定理直角三角形的性質直角三角形的判定兩個直角三角形全等的判定方法:HL有關角平分線的性質:角的內部,到角兩邊距離相等的點,在這個角的平分線上等腰直角三角形有兩個角互余的三角形是直角三角形如果三角形中兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形知識結構框架圖如下:等邊三角形等腰三角形等腰三角形的性質:軸對稱性等腰三角形的判定方法:在同一個三角形中,等角對等邊在同一個三角形中,等邊對等角底邊上的高、中線、頂角平分線三線合一直角三角形等邊三角形的性質和判定特殊三角形兩個銳角互余直角三角形斜邊上的中線等于斜邊的一半勾例1、在△ABC中,∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB●

你能得到什么結論呢?竭盡所想:●

連接AO,并延長與BC相交于D點,又能得到什么結論呢?AOBCD例1、在△ABC中,∠ABC=∠ACB,BO平分∠ABC,1、在△ABC中,∠ABC=∠ACB,BO平分∠ABCCO平分∠ACB,

過O點作EF,使EF∥BCAOBCEF(1)圖中共有幾個等腰三角形?(2)EF,EB,FC之間有什么關系?你能說明理由嗎?1、在△ABC中,∠ABC=∠ACB,BO平分∠ABC過O2、在△ABC中,∠ABC=∠ACB,BO平分∠ABCCO平分∠ACB,過O點作EF,使EF∥BC,且∠EBO=30°AOBCEF*

若BE=5,你能求出△AEF的周長嗎?*還能求出△ABC的周長嗎?*

有幾個等邊三角形?2、在△ABC中,∠ABC=∠ACB,BO平分∠ABCABBCAOEF3、在△ABC中,∠ABC≠∠ACB,BO平分∠ABCCO平分∠ACB,過O點作EF,使EF∥BCBE+CF=EF仍然成立嗎?

又會有幾個等腰三角形???BCAE例2、如圖,AB=AD,BC=CD,AC,BD相交于E點,由這些條件你能推導出哪些結論呢?請說明理由。AECDB例2、如圖,AB=AD,BC=CD,AC,BD相交于E點,由在網格中已有兩個點A、B,現(xiàn)要在格點上尋找一個點C,使△ABC為等腰三角形?!瘛馎B①已知BC=7cm,D是AB的中點,CD所在的直線把△ABC的周長分成了兩部分,其差為3cm,則腰長為多少?周長為多少?C●●D②△ACD和△BDC的面積有什么關系?在網格中已有兩個點A、B,現(xiàn)要在格點上尋找一個點C,使△AB

能力挑戰(zhàn):例3、如圖,△AMC和△BNC都為等邊三角形請試著說明AN=MBAC

BMON能力挑戰(zhàn):請試著說明AN=MBA1.已知△ABC中,∠C=90°,AD平分∠CAB,BC=10,BD=7,求點D到AB的距離為﹍﹍﹍。E3解:過D作DE⊥AB于點E∵∠C=90°,DE⊥AB,AD平分∠CAB,∴CD=DE(角平分線上的點到角兩邊的距離相等)∵BC=10,BD=7∴DE=CD=BC-BD=10-7=3練一練1.已知△ABC中,∠C=90°,AD平分∠CAB,BC2.如圖,D為等腰三角形ABC底邊BC上一點,AD=CD,∠B=30°,試判斷△ABD是不是直角三角形.說明理由.2.如圖,D為等腰三角形ABC底邊BC上一點,AD=CD,3.如圖,AB⊥BD于點B,CD⊥BD于點D,P是BD上一點,且BP=CD,∠1=∠2,則:(1)Rt△ABP與Rt△PDC全等嗎?說明理由.12(2)△APC是不是等腰直角三角形?說明理由。(3)若AC=10,E為AC中點,求PE和PA的長度.E3.如圖,AB⊥BD于點B,CD⊥BD于點D,P是BD上一點4、如圖ΔABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=6cm,AC=8cm,則CD=

cm。4、如圖ΔABC中,∠ACB=90°,CD⊥AB,垂足是D特殊三角形兩個銳角互余直角三角形斜邊上的中線等于斜邊的一半勾股定理直角三角形的性質直角三角形的判定兩個直角三角形全等的判定方法:HL有關角平分線的性質:角的內部,到角兩邊距離相等的點,在這個角的平分線上等腰直角三角形有兩個角互余的三角形是直角三角形如果三角形中兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形知識結構框架圖如下:等邊三角形等腰三角形等腰三角形的性質:軸對稱性等腰三角形的判定方法:在同一個三角形中,等角對等邊在同一個三角形中,等邊對等角底邊上的高、中線、頂角平分線三線合一直角三角形等邊三角形的性質和判定小結特殊三角形兩個銳角互余直角三角形斜邊上的中線等于斜邊的一半勾再見!再見!第二章特殊三角形復習課第二章特殊三角形特殊三角形兩個銳角互余直角三角形斜邊上的中線等于斜邊的一半勾股定理直角三角形的性質直角三角形的判定兩個直角三角形全等的判定方法:HL有關角平分線的性質:角的內部,到角兩邊距離相等的點,在這個角的平分線上等腰直角三角形有兩個角互余的三角形是直角三角形如果三角形中兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形知識結構框架圖如下:等邊三角形等腰三角形等腰三角形的性質:軸對稱性等腰三角形的判定方法:在同一個三角形中,等角對等邊在同一個三角形中,等邊對等角底邊上的高、中線、頂角平分線三線合一直角三角形等邊三角形的性質和判定特殊三角形兩個銳角互余直角三角形斜邊上的中線等于斜邊的一半勾例1、在△ABC中,∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB●

你能得到什么結論呢?竭盡所想:●

連接AO,并延長與BC相交于D點,又能得到什么結論呢?AOBCD例1、在△ABC中,∠ABC=∠ACB,BO平分∠ABC,1、在△ABC中,∠ABC=∠ACB,BO平分∠ABCCO平分∠ACB,

過O點作EF,使EF∥BCAOBCEF(1)圖中共有幾個等腰三角形?(2)EF,EB,FC之間有什么關系?你能說明理由嗎?1、在△ABC中,∠ABC=∠ACB,BO平分∠ABC過O2、在△ABC中,∠ABC=∠ACB,BO平分∠ABCCO平分∠ACB,過O點作EF,使EF∥BC,且∠EBO=30°AOBCEF*

若BE=5,你能求出△AEF的周長嗎?*還能求出△ABC的周長嗎?*

有幾個等邊三角形?2、在△ABC中,∠ABC=∠ACB,BO平分∠ABCABBCAOEF3、在△ABC中,∠ABC≠∠ACB,BO平分∠ABCCO平分∠ACB,過O點作EF,使EF∥BCBE+CF=EF仍然成立嗎?

又會有幾個等腰三角形???BCAE例2、如圖,AB=AD,BC=CD,AC,BD相交于E點,由這些條件你能推導出哪些結論呢?請說明理由。AECDB例2、如圖,AB=AD,BC=CD,AC,BD相交于E點,由在網格中已有兩個點A、B,現(xiàn)要在格點上尋找一個點C,使△ABC為等腰三角形?!瘛馎B①已知BC=7cm,D是AB的中點,CD所在的直線把△ABC的周長分成了兩部分,其差為3cm,則腰長為多少?周長為多少?C●●D②△ACD和△BDC的面積有什么關系?在網格中已有兩個點A、B,現(xiàn)要在格點上尋找一個點C,使△AB

能力挑戰(zhàn):例3、如圖,△AMC和△BNC都為等邊三角形請試著說明AN=MBAC

BMON能力挑戰(zhàn):請試著說明AN=MBA1.已知△ABC中,∠C=90°,AD平分∠CAB,BC=10,BD=7,求點D到AB的距離為﹍﹍﹍。E3解:過D作DE⊥AB于點E∵∠C=90°,DE⊥AB,AD平分∠CAB,∴CD=DE(角平分線上的點到角兩邊的距離相等)∵BC=10,BD=7∴DE=CD=BC-BD=10-7=3練一練1.已知△ABC中,∠C=90°,AD平分∠CAB,BC2.如圖,D為等腰三角形ABC底邊BC上一點,AD=CD,∠B=30°,試判斷△ABD是不是直角三角形.說明理由.2.如圖,D為等腰三角形ABC底邊BC上一點,AD=CD,3.如圖,AB⊥BD于點B,CD⊥BD于點D,P是BD上一點,且BP=CD,∠1=∠2,則:(1)Rt△ABP與Rt△PDC全等嗎?說明理由.12(2)△APC是不是等腰直角三角形?說明理由。(3)若AC=10,E為AC中點,求PE和PA的長度.E3.如圖,AB⊥BD于點B,CD⊥BD于點D,P是BD上一點4、如圖ΔABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=6cm,AC=8cm,則CD=

cm。4、如圖ΔABC中,∠ACB=90°,CD⊥AB,垂足是D特殊三角形兩個銳角互余直角三角形斜邊上的中線等于斜邊的一半勾股定理直角三角形的性質直角三角形的判定兩個直角三角形全等的判定方法:HL有關角平分線的性質:角的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論