2021九年級中考數(shù)學(xué)總復(fù)習(xí)全等三角形課件_第1頁
2021九年級中考數(shù)學(xué)總復(fù)習(xí)全等三角形課件_第2頁
2021九年級中考數(shù)學(xué)總復(fù)習(xí)全等三角形課件_第3頁
2021九年級中考數(shù)學(xué)總復(fù)習(xí)全等三角形課件_第4頁
2021九年級中考數(shù)學(xué)總復(fù)習(xí)全等三角形課件_第5頁
已閱讀5頁,還剩65頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

知識清單 全等三角形課前小測經(jīng)典回顧中考沖刺知識清單 全等三角形課前小測經(jīng)典回顧中考沖刺知識點(diǎn)一 全等三角形的性質(zhì)與判定知識清單定義能夠完全重合的兩個(gè)圖形叫做全等形.全等三角形定義能夠完全重合的兩個(gè)三角形叫做全等三角形.性質(zhì)全等三角形的對應(yīng)邊相等,對應(yīng)角相等.判定(1)三邊分別相等的兩個(gè)三角形全等(SSS);(2)兩條邊和它們的夾角分別相等的兩個(gè)三角形全等(SAS);(3)兩角和它們的夾邊分別相等的兩個(gè)三角形全等(ASA);(4)兩角和其中一個(gè)角的對邊分別相等的兩個(gè)三角形全等(AAS);(5)斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等(HL).知識點(diǎn)一 全等三角形的性質(zhì)與判定知識清單定義能夠完全重合的兩知識點(diǎn)二 角的平分線性質(zhì)角的平分線上的點(diǎn)到角兩邊的距離相等.判定到角兩邊距離相等的點(diǎn)在角的平分線上.知識點(diǎn)二 角的平分線性質(zhì)角的平分線上的點(diǎn)到角兩邊的距離相等.知識點(diǎn)三 線段的垂直平分線性質(zhì)線段的垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等.判定與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的角平分線上.知識點(diǎn)三 線段的垂直平分線性質(zhì)線段的垂直平分線上的點(diǎn)與這條線1.如圖,在△ABC與△ADC中,已知AD=AB,在不添加任何輔助線的前提下,要使△ABC≌△ADC,只需再添加的一個(gè)條件可以是

.課前小測DC=BC或∠DAC=∠BAC1.如圖,在△ABC與△ADC中,已知AD=AB,在不添加任2.

如圖,AC與BD相交于點(diǎn)O,且AB=CD,請?zhí)砑右粋€(gè)條件

,使得△ABO≌△CDO.∠A=∠C.(答案不唯一)2.如圖,AC與BD相交于點(diǎn)O,且AB=CD,請?zhí)砑右粋€(gè)條3.如圖,在四邊形ABCD中,AB∥CD,連接BD.請?zhí)砑右粋€(gè)適當(dāng)?shù)臈l件

,使△ABD≌△CDB.(只需寫一個(gè))

4.如圖,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線.若AB=6,則點(diǎn)D到AB的距離是

.AB=CD.(答案不唯一)3.如圖,在四邊形ABCD中,AB∥CD,連接BD.請?zhí)砑右?.如圖,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,則∠DBC=

°.155.如圖,在等腰三角形ABC中,AB=AC,DE垂直平分AB經(jīng)典回顧例1如圖,在邊長為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG.(1)求證:△ABG≌△AFG;(2)求BG的長.考點(diǎn)一 全等三角形的性質(zhì)與判定經(jīng)典回顧例1如圖,在邊長為6的正方形ABCD中,E是邊CD的解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵將△ADE沿AE對折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,設(shè)BG=FG=x,則GC=6﹣x,∵E為CD的中點(diǎn),∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=【變式1】如圖,已知?ABCD.(1)作圖:延長BC,并在BC的延長線上截取線段CE,使得CE=BC(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,連結(jié)AE,交CD于點(diǎn)F,求證:△AFD≌△EFC.【變式1】如圖,已知?ABCD.(1)解:如圖所示:(2)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥BC,∴∠DAF=∠CEF,又∠DFA=∠CFE,∴△AFD≌△EFC(AAS).(1)解:如圖所示:例2如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點(diǎn)D,PC=4,則PD=

.考點(diǎn)二 角的平分線2例2如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,P【變式2】如圖,OP為∠AOB的平分線,PC⊥OB于點(diǎn)C,且PC=3,點(diǎn)P到OA的距離為

【變式3】如圖,OP為∠AOB的角平分線,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論錯(cuò)誤的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD3B【變式2】如圖,OP為∠AOB的平分線,PC⊥OB于點(diǎn)C,且例3如圖,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分線,DE交AB于點(diǎn)D,連接CD,則CD=()A.3 B.4 C.4.8 D.5考點(diǎn)三 線段的垂直平分線D例3如圖,已知△ABC中,AB=10,AC=8,BC=6,D【變式4】如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點(diǎn)D,連接BD,則∠ABD=

度.【變式5】如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E.若BC=3,則DE的長為()A.1 B.2 C.3 D.435A【變式4】如圖,在△ABC中,AB=BC,∠ABC=110°一、選擇題中考沖刺1.如圖,點(diǎn)E,F(xiàn)在線段BC上,△ABF與△DCE全等,點(diǎn)A與點(diǎn)D,點(diǎn)B與點(diǎn)C是對應(yīng)頂點(diǎn),AF與DE交于點(diǎn)M,則∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFBA一、選擇題中考沖刺1.如圖,點(diǎn)E,F(xiàn)在線段BC上,△ABF與2.如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD3.如圖,點(diǎn)D,E分別在線段AB,AC上,CD與BE相交于O點(diǎn),已知AB=AC,現(xiàn)添加以下的哪個(gè)條件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CDAD

2.如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△A4.如圖,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一個(gè)條件后,仍然不能證明△ABC≌△DEF,這個(gè)條件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF5.如圖,AB∥CD,BP和CP分別平分∠ABC和∠DCB,AD過點(diǎn)P,且與AB垂直.若AD=8,則點(diǎn)P到BC的距離是()A.8 B.6 C.4 D.2DC4.如圖,在△ABC和△DEF中,∠B=∠DEF,AB=DE6.到三角形三個(gè)頂點(diǎn)的距離都相等的點(diǎn)是這個(gè)三角形的()A.三條高的交點(diǎn)

B.三條角平分線的交點(diǎn)C.三條中線的交點(diǎn)

D.三條邊的垂直平分線的交點(diǎn)7.如圖所示,線段AC的垂直平分線交線段AB于點(diǎn)D,∠A=50°,則∠BDC=()A.50° B.100° C.120° D.130°

DB6.到三角形三個(gè)頂點(diǎn)的距離都相等的點(diǎn)是這個(gè)三角形的()D二、填空題8.如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=

.9.如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸、y軸上,OA=3,OB=4,連接AB.點(diǎn)P在平面內(nèi),若以點(diǎn)P、A、B為頂點(diǎn)的三角形與△AOB全等(點(diǎn)P與點(diǎn)O不重合),則點(diǎn)P的坐標(biāo)為

120°(3,4)二、填空題8.如圖,△ABC≌△A′B′C′,其中∠A=3610.如圖,四邊形ABCD的對角線AC、BD相交于點(diǎn)O,△ABO≌△ADO.下列結(jié)論:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正確結(jié)論的序號是

①②③10.如圖,四邊形ABCD的對角線AC、BD相交于點(diǎn)O,△A11.如圖,在△ABC中,分別以AC、BC為邊作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)O,則∠AOB的度數(shù)為

120°11.如圖,在△ABC中,分別以AC、BC為邊作等邊三角形A12.

如圖,在△ABC中,∠C=90°,∠ABC的平分線BD交AC于點(diǎn)D,若BD=10cm,BC=8cm,則點(diǎn)D到直線AB的距離是

cm.612.如圖,在△ABC中,∠C=90°,∠ABC的平分13.如圖,在菱形ABCD中,點(diǎn)P是對角線AC上的一點(diǎn),PE⊥AB于點(diǎn)E.若PE=3,則點(diǎn)P到AD的距離為

.313.如圖,在菱形ABCD中,點(diǎn)P是對角線AC上的一點(diǎn),PE14.如圖,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線.若AB=6,則點(diǎn)D到AB的距離是

.14.如圖,在△ABC中,∠C=90°,∠A=30°,BD是15.如圖,在△ABC中,∠C=31°,∠ABC的平分線BD交AC于點(diǎn)D,如果DE垂直平分BC,那么∠A=

°.8715.如圖,在△ABC中,∠C=31°,∠ABC的平分線BD三、解答題16.一個(gè)平分角的儀器如圖所示,其中AB=AD,BC=DC.求證:∠BAC=∠DAC.三、解答題16.一個(gè)平分角的儀器如圖所示,其中AB=AD,B證明:∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.證明:∵AB=AD,BC=DC,AC=AC,17.如圖,△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)E在AB上.求證:△CDA≌△CEB.17.如圖,△ABC、△CDE均為等腰直角三角形,∠ACB=證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,∴△CDA≌△CEB.證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠D18.如圖,點(diǎn)A、C、D、B四點(diǎn)共線,且AC=BD,∠A=∠B,∠ADE=∠BCF,求證:DE=CF.18.如圖,點(diǎn)A、C、D、B四點(diǎn)共線,且AC=BD,∠A=∠證明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,又∠A=∠B,∠ADE=∠BCF,∴△AED≌△BFC(ASA),∴DE=CF.證明:∵AC=BD,19.如圖,AB∥CD,E是CD上一點(diǎn),BE交AD于點(diǎn)F,EF=BF.求證:AF=DF.19.如圖,AB∥CD,E是CD上一點(diǎn),BE交AD于點(diǎn)F,E證明:∵AB∥CD,∴∠B=∠FED,又BF=EF,∠AFB=∠EFD,∴△ABF≌△DEF,∴AF=DF.證明:∵AB∥CD,知識清單 全等三角形課前小測經(jīng)典回顧中考沖刺知識清單 全等三角形課前小測經(jīng)典回顧中考沖刺知識點(diǎn)一 全等三角形的性質(zhì)與判定知識清單定義能夠完全重合的兩個(gè)圖形叫做全等形.全等三角形定義能夠完全重合的兩個(gè)三角形叫做全等三角形.性質(zhì)全等三角形的對應(yīng)邊相等,對應(yīng)角相等.判定(1)三邊分別相等的兩個(gè)三角形全等(SSS);(2)兩條邊和它們的夾角分別相等的兩個(gè)三角形全等(SAS);(3)兩角和它們的夾邊分別相等的兩個(gè)三角形全等(ASA);(4)兩角和其中一個(gè)角的對邊分別相等的兩個(gè)三角形全等(AAS);(5)斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等(HL).知識點(diǎn)一 全等三角形的性質(zhì)與判定知識清單定義能夠完全重合的兩知識點(diǎn)二 角的平分線性質(zhì)角的平分線上的點(diǎn)到角兩邊的距離相等.判定到角兩邊距離相等的點(diǎn)在角的平分線上.知識點(diǎn)二 角的平分線性質(zhì)角的平分線上的點(diǎn)到角兩邊的距離相等.知識點(diǎn)三 線段的垂直平分線性質(zhì)線段的垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等.判定與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的角平分線上.知識點(diǎn)三 線段的垂直平分線性質(zhì)線段的垂直平分線上的點(diǎn)與這條線1.如圖,在△ABC與△ADC中,已知AD=AB,在不添加任何輔助線的前提下,要使△ABC≌△ADC,只需再添加的一個(gè)條件可以是

.課前小測DC=BC或∠DAC=∠BAC1.如圖,在△ABC與△ADC中,已知AD=AB,在不添加任2.

如圖,AC與BD相交于點(diǎn)O,且AB=CD,請?zhí)砑右粋€(gè)條件

,使得△ABO≌△CDO.∠A=∠C.(答案不唯一)2.如圖,AC與BD相交于點(diǎn)O,且AB=CD,請?zhí)砑右粋€(gè)條3.如圖,在四邊形ABCD中,AB∥CD,連接BD.請?zhí)砑右粋€(gè)適當(dāng)?shù)臈l件

,使△ABD≌△CDB.(只需寫一個(gè))

4.如圖,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線.若AB=6,則點(diǎn)D到AB的距離是

.AB=CD.(答案不唯一)3.如圖,在四邊形ABCD中,AB∥CD,連接BD.請?zhí)砑右?.如圖,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,則∠DBC=

°.155.如圖,在等腰三角形ABC中,AB=AC,DE垂直平分AB經(jīng)典回顧例1如圖,在邊長為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG.(1)求證:△ABG≌△AFG;(2)求BG的長.考點(diǎn)一 全等三角形的性質(zhì)與判定經(jīng)典回顧例1如圖,在邊長為6的正方形ABCD中,E是邊CD的解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵將△ADE沿AE對折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,設(shè)BG=FG=x,則GC=6﹣x,∵E為CD的中點(diǎn),∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=【變式1】如圖,已知?ABCD.(1)作圖:延長BC,并在BC的延長線上截取線段CE,使得CE=BC(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,連結(jié)AE,交CD于點(diǎn)F,求證:△AFD≌△EFC.【變式1】如圖,已知?ABCD.(1)解:如圖所示:(2)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥BC,∴∠DAF=∠CEF,又∠DFA=∠CFE,∴△AFD≌△EFC(AAS).(1)解:如圖所示:例2如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點(diǎn)D,PC=4,則PD=

.考點(diǎn)二 角的平分線2例2如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,P【變式2】如圖,OP為∠AOB的平分線,PC⊥OB于點(diǎn)C,且PC=3,點(diǎn)P到OA的距離為

【變式3】如圖,OP為∠AOB的角平分線,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論錯(cuò)誤的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD3B【變式2】如圖,OP為∠AOB的平分線,PC⊥OB于點(diǎn)C,且例3如圖,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分線,DE交AB于點(diǎn)D,連接CD,則CD=()A.3 B.4 C.4.8 D.5考點(diǎn)三 線段的垂直平分線D例3如圖,已知△ABC中,AB=10,AC=8,BC=6,D【變式4】如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點(diǎn)D,連接BD,則∠ABD=

度.【變式5】如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E.若BC=3,則DE的長為()A.1 B.2 C.3 D.435A【變式4】如圖,在△ABC中,AB=BC,∠ABC=110°一、選擇題中考沖刺1.如圖,點(diǎn)E,F(xiàn)在線段BC上,△ABF與△DCE全等,點(diǎn)A與點(diǎn)D,點(diǎn)B與點(diǎn)C是對應(yīng)頂點(diǎn),AF與DE交于點(diǎn)M,則∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFBA一、選擇題中考沖刺1.如圖,點(diǎn)E,F(xiàn)在線段BC上,△ABF與2.如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD3.如圖,點(diǎn)D,E分別在線段AB,AC上,CD與BE相交于O點(diǎn),已知AB=AC,現(xiàn)添加以下的哪個(gè)條件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CDAD

2.如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△A4.如圖,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一個(gè)條件后,仍然不能證明△ABC≌△DEF,這個(gè)條件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF5.如圖,AB∥CD,BP和CP分別平分∠ABC和∠DCB,AD過點(diǎn)P,且與AB垂直.若AD=8,則點(diǎn)P到BC的距離是()A.8 B.6 C.4 D.2DC4.如圖,在△ABC和△DEF中,∠B=∠DEF,AB=DE6.到三角形三個(gè)頂點(diǎn)的距離都相等的點(diǎn)是這個(gè)三角形的()A.三條高的交點(diǎn)

B.三條角平分線的交點(diǎn)C.三條中線的交點(diǎn)

D.三條邊的垂直平分線的交點(diǎn)7.如圖所示,線段AC的垂直平分線交線段AB于點(diǎn)D,∠A=50°,則∠BDC=()A.50° B.100° C.120° D.130°

DB6.到三角形三個(gè)頂點(diǎn)的距離都相等的點(diǎn)是這個(gè)三角形的()D二、填空題8.如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=

.9.如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸、y軸上,OA=3,OB=4,連接AB.點(diǎn)P在平面內(nèi),若以點(diǎn)P、A、B為頂點(diǎn)的三角形與△AOB全等(點(diǎn)P與點(diǎn)O不重合),則點(diǎn)P的坐標(biāo)為

120°(3,4)二、填空題8.如圖,△ABC≌△A′B′C′,其中∠A=3610.如圖,四邊形ABCD的對角線AC、BD相交于點(diǎn)O,△ABO≌△ADO.下列結(jié)論:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正確結(jié)論的序號是

①②③10.如圖,四邊形ABCD的對角線AC、BD相交于點(diǎn)O,△A11.如圖,在△ABC中,分別以AC、BC為邊作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)O,則∠AOB的度數(shù)為

120°11.如圖,在△ABC中,分別以AC、BC為邊作等邊三角形A12.

如圖,在△ABC中,∠C=90°,∠ABC的平分線BD交AC于點(diǎn)D,若BD=10cm,BC=8cm,則點(diǎn)D到直線AB的距離是

cm.612.如圖,在△ABC中,∠C=90°,∠ABC的平分13.如圖,在菱形ABCD中,點(diǎn)P是對角線AC上的一點(diǎn),PE⊥A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論