




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年河北省滄州市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.()有助于同級部門或同級領(lǐng)導(dǎo)之間的溝通了解。
A.上行溝通B.下行溝通C.平行溝通D.分權(quán)
2.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合
3.下列命題中正確的為
A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0
B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)
C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)
D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0
4.
5.
6.方程z=x2+y2表示的二次曲面是().
A.球面
B.柱面
C.圓錐面
D.拋物面
7.
8.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
9.A.A.發(fā)散B.絕對收斂C.條件收斂D.收斂性與k有關(guān)
10.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
11.方程x2+y2-z=0表示的二次曲面是
A.橢圓面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
12.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面
13.A.
B.
C.
D.
14.()A.A.
B.
C.
D.
15.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1
16.()。A.2ex+C
B.ex+C
C.2e2x+C
D.e2x+C
17.
18.
19.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
20.
21.若,則下列命題中正確的有()。A.
B.
C.
D.
22.設(shè)()A.1B.-1C.0D.2
23.鑒別的方法主要有查證法、比較法、佐證法、邏輯法。其中()是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
A.查證法B.比較法C.佐證法D.邏輯法
24.
A.arcsinb-arcsina
B.
C.arcsinx
D.0
25.()。A.2πB.πC.π/2D.π/4
26.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().
A.2sinxB.2cosxC.-2sinxD.-2cosx
27.
28.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
29.A.(1/3)x3
B.x2
C.2xD.(1/2)x
30.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無窮小B.同階但不等價(jià)無窮小C.等價(jià)無窮小D.低階無窮小
31.
32.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
33.
34.微分方程y+y=0的通解為().A.A.
B.
C.
D.
35.
36.過曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
37.
38.
39.
40.41.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
42.
43.()。A.充分必要條件B.充分非必要條件C.必要非充分條件D.既非充分也非必要條件44.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.低階無窮小
45.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
46.()。A.-2B.-1C.0D.2
47.
48.
49.
50.A.A.小于0B.大于0C.等于0D.不確定二、填空題(20題)51.
52.
53.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.
54.
55.過點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_________.
56.
57.58.59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
三、計(jì)算題(20題)71.72.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
73.
74.證明:75.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
76.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
77.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.78.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).79.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
80.81.
82.將f(x)=e-2X展開為x的冪級數(shù).83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.84.85.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則86.
87.求微分方程y"-4y'+4y=e-2x的通解.
88.求曲線在點(diǎn)(1,3)處的切線方程.
89.
90.求微分方程的通解.四、解答題(10題)91.92.將f(x)=sin3x展開為x的冪級數(shù),并指出其收斂區(qū)間。
93.
94.求函數(shù)y=xex的極小值點(diǎn)與極小值。95.設(shè)y=ln(1+x2),求dy。96.求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積.
97.
98.
99.
100.五、高等數(shù)學(xué)(0題)101.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合六、解答題(0題)102.
參考答案
1.C解析:平行溝通有助于同級部門或同級領(lǐng)導(dǎo)之間的溝通了解。
2.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
3.D解析:由極值的必要條件知D正確。
y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。
y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。
4.D
5.A
6.D對照標(biāo)準(zhǔn)二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.
7.D
8.B
9.C
10.D
11.C
12.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
13.B
14.C
15.C
16.B
17.C解析:
18.A
19.C本題考查的知識點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
20.C
21.B本題考查的知識點(diǎn)為級數(shù)收斂性的定義。
22.A
23.C解析:佐證法是指通過尋找物證、人證來驗(yàn)證信息的可靠程度的方法。
24.D
本題考查的知識點(diǎn)為定積分的性質(zhì).
故應(yīng)選D.
25.B
26.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f(x)=2(sinx)≈2cosx.
可知應(yīng)選B.
27.D解析:
28.C
29.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點(diǎn)。
Y=x2+1,(dy)/(dx)=2x
30.D解析:
31.D解析:
32.D由拉格朗日定理
33.A
34.D本題考查的知識點(diǎn)為-階微分方程的求解.
可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.
解法1將方程認(rèn)作可分離變量方程.
解法2將方程認(rèn)作-階線性微分方程.由通解公式可得
解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:
特征方程為r+1=0,
特征根為r=-1,
35.D
36.D本題考查的知識點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.
37.B
38.A
39.A
40.C
41.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
42.B解析:
43.C
44.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無窮小,因此選A。
45.D
46.A
47.B
48.B
49.B
50.C
51.
52.53.[-1,1
54.dx
55.
56.-sinx57.1/2
本題考查的知識點(diǎn)為計(jì)算二重積分.
其積分區(qū)域如圖1—1陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1
解法2化為先對y積分,后對x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對x積分,后對y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知58.本題考查的知識點(diǎn)為無窮小的性質(zhì)。
59.
60.2
61.
62.(-33)(-3,3)解析:63.本題考查的知識點(diǎn)為冪級數(shù)的收斂區(qū)間。由于所給級數(shù)為不缺項(xiàng)情形,
64.
65.
66.00解析:
67.
68.
解析:
69.ln|x-1|+c
70.+∞(發(fā)散)+∞(發(fā)散)
71.
72.由二重積分物理意義知
73.
74.
75.函數(shù)的定義域?yàn)?/p>
注意
76.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
77.
78.
列表:
說明
79.
80.
81.由一階線性微分方程通解公式有
82.
83.
84.85.由等價(jià)無窮小量的定義可知
86.
則
87.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
88.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
89.
90.
91.
92.
93.
94.
95.96.所給曲線圍成的平面圖形如圖1-3所示.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- YY/T 1946-2024腫瘤組織基因突變檢測試劑盒(高通量測序法)
- 農(nóng)副產(chǎn)品購銷示范合同
- 簽訂的門面租賃合同條款解析
- 建筑項(xiàng)目施工合同管理人員聘用合同
- 炒股合作經(jīng)典合同案例
- 車輛采購合同細(xì)則
- 國際物流服務(wù)合同專業(yè)版詳解
- 農(nóng)村土地流轉(zhuǎn)授權(quán)合同書
- 城市房屋拆遷補(bǔ)償安置標(biāo)準(zhǔn)合同樣本
- 鋼材買賣合同(示范文本GF-0155)
- 骶髂關(guān)節(jié)損傷郭倩課件
- 內(nèi)科學(xué)疾病概要-支氣管擴(kuò)張課件
- 2025陜西渭南光明電力集團(tuán)限公司招聘39人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 預(yù)防感冒和流感的方法
- 2024年黑龍江職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 2024年南京旅游職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 股指期貨基礎(chǔ)知識介紹培訓(xùn)課件
- 2024年北京東城社區(qū)工作者招聘筆試真題
- xx學(xué)校培訓(xùn)部工作職責(zé)
- T-GXAR 005-2024 制冷機(jī)房運(yùn)行維護(hù)規(guī)程
- 開工第一課安全培訓(xùn)總結(jié)精彩
評論
0/150
提交評論