全套課件:工程流體力學(xué)_第1頁
全套課件:工程流體力學(xué)_第2頁
全套課件:工程流體力學(xué)_第3頁
全套課件:工程流體力學(xué)_第4頁
全套課件:工程流體力學(xué)_第5頁
已閱讀5頁,還剩256頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023/1/111

SchoolofJetPropulsionBeihangUniversity.FLUIDMECHANICS2023/1/112Chapter1Introduction1.1PreliminaryRemarks

Whenyouthinkaboutit,almosteverythingonthisplaneteitherisafluidormoveswithinorneara

fluid.-FrankM.WhiteWhatisafluid?2023/1/113

TheconceptofafluidAsolidcanresistashearstress(剪切應(yīng)力)byastaticdeformation,afluidcannot.Anyshearstressappliedtoafluid,nomatterhowsmall,willresultinmotionofthatfluid.Thefluidmovesanddeformscontinuouslyaslongastheshearisapplied.2023/1/114WhatisFluidMechanics

FluidMechanicsisthestudyoffluideitherinmotion(FluidDynamics流體動(dòng)力學(xué))oratrest(FluidStatics流體靜力學(xué))andsubsequenteffectsofthefluidupontheboundaries,whichmaybeeithersolidsurfacesorinterfaceswithotherfluids.2023/1/115ThefamouscollapseoftheTacomaNarrowBridgein1940Curvedshoot(Bananashoot)NospinSpinwhy2023/1/116Boeing74770.7×64.4×19.41(m)395000kgAn-22584×88.4×18.1(m)600,000kg

Howcantheairplanefly?Drag&Lift2023/1/1172023/1/118Theengineofaturbofan(渦扇)jet2023/1/119;2023/1/1110HistoryandScopeof

FluidMechanicsPre-history:Sailingshipswithoars(櫓槳)andirrigationsystemwerebothknowninprehistory2023/1/1111Archimedes(285-212BC)Parallelogramlawforadditionofvectors

Lawofbuoyancy2023/1/1112LeonardodaVinci(1452-1519)*Equationofconservationofmassinone-dimensionalsteadyflow*Experimentalist*Turbulence2023/1/1113IsaacNewton(1642-1727)LawsofmotionLawsofviscosityofNewtonianfluid2023/1/1114

18thcenturyMathematicians:Euler(歐拉):

EulerequationBernoulli(伯努利):BernoulliequationFrictionless(無粘)flowsolutionsD’Alembert(達(dá)朗貝爾):

D’Alembertparadox(佯謬,疑題)Engineers:Hydraulics(水力學(xué))relayingonexperimentChannels,Shipresistance,Pipeflows,WaveturbinePitotVenturiTorricelliPoiseuille2023/1/111519thcenturyNavier(1785-1836)

&

Stokes(1819-1905)N-Sequation

viscousflowsolutionReynolds(1842-1912)

TurbulenceFamousexperimentontransitionReynoldsNumber2023/1/111620thcenturyLudwigPrandtl

(1875-1953)Boundarytheory(1904)Tobethesinglemostimportanttoolinmodernflowanalysis.ThefatherofmodernfluidmechanicsVonkarman(1881-1963)I.taylor(1886-1975)Laidfoundationforthepresentstateoftheartinfluidmechanics2023/1/11171.2TheFluidasaContinuum(連續(xù)介質(zhì))Density(密度)Elementalvolume(流體微團(tuán)、流體質(zhì)點(diǎn))*Largeenoughinmicroscope(微觀)10-9mm3ofairatstandardconditionscontainsapproximately3×107molecules.Sodensityisessentiallyapointfunctionandfluidpropertiescanbethoughtofasvaryingcontinuallyinspace.*Smallenoughinmacroscope(宏觀).Mostengineeringproblemsareconcernedwithphysicaldimensionsmuchlargerthanthislimitingvolume.2023/1/1118TheelementalvolumemustbesmallenoughinmacroscopeSuchafluidiscalledacontinuum,whichsimplymeansthatitsvariationinpropertiesissosmooththatthedifferentialcalculuscanbeusedtoanalyzethesubstance.2023/1/11191.3SomePropertiesoffluids1.viscosity(粘性)*Definition:Whenafluidissheared(剪切),itbeginstomove.Subsequently,apairofforcesappearontheshearsurface,whichresiststheshearmotionofthefluid.Thisiscalled

viscosityThisresistantforceis

shearstress.(剪切應(yīng)力,內(nèi)摩擦應(yīng)力)Infact,thisshearmotionofafluidisakindofdeformation(變形)*Thenatureofviscosity:Forliquidiscohesion(結(jié)合)(movie)Forgasisthetransportofmomentum(動(dòng)量輸運(yùn))(movie)2023/1/1120m:Coefficientofviscosity(粘性系數(shù))[FT/L2]n=m/r:Kinematicviscosity(運(yùn)動(dòng)學(xué)粘性系數(shù))[L2/T]Velocitygradient*Newtonianlawofviscosity(牛頓粘性定律,牛頓內(nèi)摩擦定律)UUu(y)xyShearstressThelinearfluid,whichfollowNewtonianresistancelaw,iscalledNewtonianflow.(牛頓流動(dòng)、牛頓流體)Thevelocitygradientisinfactakindofdeformation.Realfluid(Viscous),Idealfluid(Inviscid&Frictionless)2023/1/11212.Compressibility(壓縮性)Incompressible(不可壓):r=constMostliquidflowsaretreatedasincompressible.Only1percentincreaseifpressureincreaseby220Compressible(可壓縮):

r=r(P.T)Gasescanalsobetreatedasincompressiblewhentheirvelocityislessthan0.3Manumbers3.StateRelationsforGasesPerfect-gasLaw(理想氣體狀態(tài)方程)2023/1/11224.ThermalConductivity(熱傳導(dǎo))

:

heatfluxinndirectionperunitareak:coefficientofthermalconductivityT:temperaturen:directionofheattransferFourier’slawofheatconduction2023/1/11231.4Twodifferentpointsofviewinanalyzingproblemsinmechanics*TheEulerianview(歐拉觀點(diǎn))andtheLagrangianview(拉格朗日觀點(diǎn))TheEulerianviewisconcernedwiththefieldofflow,appropriatetofluidmechanics.TheLagrangian

viewfollowsanindividualparticlemovingthoughtheflow,appropriatetosolidmechanics.Thecontrastoftwoframes2023/1/1124*Flowclassification(流動(dòng)分類)AccordingtoEulerianview,anypropertyisfunctionofcoordinates(space)andtime.InCartesiansystem(直角坐標(biāo)系),itcanbeexpressedasf(x,y,z,t)x,y,z,t:Eulerianvariablecomponent(歐拉變數(shù))f:Functionofonlyonecoordinatecomponent,one-dimensional

(一維

1-D).Inthelikemanner,two-dimensional(二維2-D)

,three-dimensional

(三維

3-D)

:Functionoftime~~unsteady

(非定常)Otherwisesteady(定常)2023/1/1125OneTwodimensionalThreeSteadyUnsteadyCompressibleIncompressibleViscousInviscid2023/1/11261.5Streamline(流線),Pathline(跡線)&Flowfield(流場(chǎng))*Whatisastreamline

Astreamlineisthelineeverywheretangenttothevelocityvectoratagiveninstant.2023/1/1127

A

pathlineistheactualpathtraversedbyagivenfluidparticles.Forsteadyflow:Streamline=Pathline*WhatisapathlinePathlinesinsteadyflowPathlinesinunsteadyflow2023/1/1128FlowPattern(流型、流普、流線族)Streamsurface(流面)&Streamtube(流管)Flowpattern:asetofstreamlinesStreamsurface:acollectionofallthestreamlinespassingthroughalinewhichisnotastreamline.Streamlinecannotintersect(相交),exceptforsingularitypoint(奇點(diǎn))Streamtube:aclosedcollectionofstreamlines.Noflowacrossstreamtubewalls2023/1/1129Flowfield(流場(chǎng))

:Inagivenflowsituation,thepropertiesofthefluidarefunctionsofpositionandtime,namelyspace-timedistributionsofthefluidproperties.2023/1/1130Streamlineequation(流線方程)ds->Infinitesimal(無窮小)dydxds2023/1/1131Example:Giventhesteadytwo-dimensionalvelocitydistributionu=kx,v=-ky,w=0,wherekisapositiveconstant.Computeandplotthestreamlinesoftheflow,includingdirection.Solution:

Sincetime(t)doesnotappearexplicitly,themotionissteady,sothatstreamlines,pathlineswillcoincide.Sincew=0,themotionistwo-dimensional.Integrating:Hyperbolas(雙曲線)2023/1/1132Direction:

u=kx,v=-ky

QuadrantI(第一象限)(x>0,y>0)u>0,v<0

Atthepointo:u=v=0Singularitypoint,(匯)xyo2023/1/11331.5Surfaceforce(表面力)andbodyforce(質(zhì)量力,體積力)Surfaceforceactscontinuouslyonthesidesurfacesoffluidelements.Pressure,friction.Contactsurfaceforceperunitarea(單位面積)(應(yīng)力)Bodyforceactsontheentiremassoftheelement.Gravity,electromagnetic.NocotactPerunitmass(單位質(zhì)量)g2023/1/1134Homework1.Giventhevelocitydistribution:u=-cy,v=cx,w=0Wherecisapositiveconstant.Computeandplotthestreamlinesoftheflow.2.Givenvelocitydistribution:u=x+t,v=-y+t,w=0(tistime)Findthestreamlinepassingthroughpoint(-1,-1)attheinstantt=0.35White: Chapter2潘錦珊: 第一章Chapter2

PressureDistribution

inafluid

(FluidStatics

Basic)36Definition:Unit:(SI)(PoundperSquireInch)Verticaltothesurfaceandpointintoit.Atanypoint,pressureisindependentoforientation.PropertiesofPressurePressure37Atanypointinastaticfluid,pressureisindependentoforientation.Verification:When(up)Forcesonleftandupsurface:38FluidMechanicsAerodynamicsFluidatrestFluidStaticsFluidDynamicsFluidinmotion39Pressureistheonlysurfaceforce.Pressuredistributionrelatestobodyforceonly.Dams(水壩)Buoyancyrelatedinstrument(利用浮力的裝置)

Fluidpowersystem(液壓驅(qū)動(dòng)系統(tǒng))Connectedvessel(連通器)……Applications:§2.1Fluid@rest40Consideracubeinastaticfluid Pressureatthecenterisp; Bodyforcesaredxdydz§2.2EquilibriumofaFluidElement41dxdydzdxdydzPressure:Bodyforce:42Inxdirection:ForceonleftsurfaceForceonrightsurfaceBodyforceinxdirectionEulerEquilibriumEquations(Euler1775)43Pressureincreaseinthedirectionofbodyforce.Surfacesinfluidwithsamepressure,verticaltobodyforceeverywhere,ingravityfielditisahorizontalplane.Equipressuresurface(等壓面)44xzzhz0p01Basicrule:Generalsolution2Boundarycondition:§2.3

PressureDistributionunderGravity45PressureatfreesurfacePressureduetoweightontopAnypointwiththesamedepthhunderfreesurfacehasthesamepressure.equipressuresurface(等壓面)Freesurfaceisanequipressuresurface46p0Watermanometer(水柱壓力計(jì))phPressuresourceConnectedwatertubeApplication?Absolutepressure(絕對(duì)壓力)Relativepressure(相對(duì)壓力)Gaugepressure(表壓力)Vacuumdegree(真空度)Pressuremeasurementh(mmH2O)h+p0

(mmH2O)pA絕壓pG表壓47P2.7Homework:48Centroid(形心,重心)hcycChyxAαyxp0FindtotalforceP§2.4HydrostaticForceonPlaneSurface49hc:

depthofcentroidTheforceonasubmergedplaneequalsthepressureattheplatecentertimestheplatearea,independentoftheshapeoftheplateortheangle.CenterofpressureIsthecenterofpressureatcentroid?hcycChdydDhyxAαyxp050hcycChdydDhyxAαyxp0Momenttoxaxis51ExampleThegateis5mwide,ishingedatpointB,andrestagainstasmoothwallatpointA.FindTheforceonthegateexertedbyseawaterpressure,ThehorizontalforcePxexertedbythewallatpointA52(a)Centroid:3maboveBSolution:(b)LcL53HooverDamChannel

SelectadAandfindthethreeforcesonitIntegration§2.5HydrostaticForcesonCurvedSurfaces54Conclusion:x1.Horizontalforces:xOzAAx2.Verticalforces:OzV55Example:Findtheforcesactingonthehemi-sphericalcovers.RFOxyH45oSolution:56§2.6.1UniformLinearAcceleration(恒加速度直線運(yùn)動(dòng))aX=-agxGravityBodyforceInertiaForce§2.6Fluidinrigidbodymotion57Boundarycondition:Atfreesurface(自由液面)Equipressuresurface(等壓面)EulerEquilibriumEquations58Acupofcoffeeis7cmdeepatrest.1.Whetheritwillspilloutwhileax=7m/s2?2.GagepressureofpointA?Example:Solution:Itwillnotspillout!59§2.6.2Rigidbodyrotation(整體旋轉(zhuǎn))gω2rzfOω2yωxyROfω2xryxθBodyforce:Equipressuresurface:dp=060Paraboladish(拋物面)Freesurface:gω2rzfOz0Howtofindz0?旋轉(zhuǎn)拋物面體的體積是同底面積和高的圓柱體積的一半。61P2.64P2.97(selective) P2.147P2.152Homework:3.1Systems(體系)versusControlVolumes

(控制體)

System:anarbitraryquantityofmassoffixedidentity.

Everythingexternaltothissystemisdenotedbythetermsurroundings,andthesystemisseparatedfromitssurroundingsbyit‘sboundariesthroughwhichnomassacross.(Lagrange拉格朗日)Chapter3IntegralRelations(積分關(guān)系式)

foraControlVolumeinOne-dimensionalSteadyFlows

ControlVolume(CV):

In

theneighborhoodofourproductthefluidformstheenvironmentwhoseeffectonourproductwewishtoknow.Thisspecificregioniscalledcontrolvolume,withopenboundariesthroughwhichmass,momentumandenergyareallowedtoacross.(Euler歐拉)FixedCV,movingCV,deformingCV3.2BasicPhysicalLawsofFluidMechanicsAllthelawsofmechanicsarewrittenforasystem,whichstatewhathappenswhenthereisaninteractionbetweenthesystemandit’ssurroundings.IfmisthemassofthesystemConservationofmass(質(zhì)量守恒)Newton’ssecondlawAngularmomentumFirstlawofthermodynamic

Itisrarethatwewishtofollowtheultimatepathofaspecificparticleoffluid.Insteaditislikelythatthefluidformstheenvironmentwhoseeffectonourproductwewishtoknow,suchashowanairplaneisaffectedbythesurroundingair,howashipisaffectedbythesurroundingwater.Thisrequiresthatthebasiclawsberewrittentoapplytoaspecificregionintheneighboredofourproductnamelyacontrolvolume(CV).TheboundaryoftheCViscalledcontrolsurface(CS)BasicLawsforsystemforCV3.3TheReynoldsTransportTheorem(RTT)雷諾輸運(yùn)定理1122isCV.1*1*2*2*issystemwhichoccupiestheCVatinstantt.:Theamountofperunitmass

ThetotalamountofintheCVis:t+dtt+dttts:anypropertyoffluidt+dtt+dtttsInthelikemanner

s1-Dflow

:

isonlythefunctionofs.Forsteadyflow:t+dtt+dtttdsRTTIfthereareseveralone-Dinletsandoutlets:Steady,1-Donlyininletsandoutlets,nomatterhowtheflowiswithintheCV.3.3Conservationofmass(質(zhì)量守恒)(ContinuityEquation)f=mb=dm/dm=1Massflux(質(zhì)量流量)Forincompressibleflow:體積流量LeonardodaVinciin1500Ifonlyoneinletandoneoutlet

壺口瀑布是我國著名的第二大瀑布。兩百多米寬的黃河河面,突然緊縮為50米左右,跌入30多米的壺形峽谷。入壺之水,奔騰咆哮,勢(shì)如奔馬,浪聲震天,聲聞十里?!包S河之水天上來”之驚心動(dòng)魄的景觀。

Example:Ajetengineworkingatdesigncondition.AttheinletofthenozzleAttheoutletPleasefindthemassfluxandvelocityattheoutlet.GivengasconstantT1=865K,V1=288m/s,A1=0.19㎡;

T2=766K,A2=0.1538㎡

R=287.4J/kg.K。

SolutionAccordingtotheconservationofmassHomework:P185P3.12,P189P3.36

3.4TheLinearMomentumEquation(動(dòng)量方程)

(Newton’sSecondLaw

)Newton’ssecondlaw:NetforceonthesystemorCV(體系或控制體受到的合外力):Momentumflux(動(dòng)量流量)1-Din&outsteadyRTTFfluxForonlyoneinletandoneoutletAccordingtocontinuity2-out,1-inExample:Afixedcontrolvolumeofastreamtubeinsteadyflowhasauniforminlet(r1,A1,V1)andauniformexit(r2,A2,V2).Findthenetforceonthecontrolvolume.Solution:Neglecttheweightofthefluid.Findtheforceonthewaterbytheelbowpipe.Example:1212Solution:selectcoordinate,controlvolumeInthelikemannerFindtheforcetofixtheelbow.Solution:coordinate,CVNetforceonthecontrolvolume:WhereFexistheforceontheCVbypipe,(onelbow)12FexSurfaceforce:(1)Forcesexposedbycuttingthoughsolidbodieswhichprotrudeintothesurface.(2)Pressure,viscousstress.AfixedvaneturnsawaterjetofareaAthroughanangleqwithoutchangingitsvelocitymagnitude.Theflowissteady,pressurepaiseverywhere,andfrictiononthevaneisnegligible.FindtheforceFappliedtovane.AwaterjetofvelocityVjimpingesnormaltoaflatplatewhichmovestotherightatvelocityVc.Findtheforcerequiredtokeeptheplatemovingatconstantvelocityandthepowerdeliveredtothecartifthejetdensityis1000kg/m3thejetareais3cm2,andVj=20m/s,Vc=15m/sNeglecttheweightofthejetandplate,andassumesteadyflowwithrespecttothemovingplatewiththejetsplittingintoanequalupwardanddownwardhalf-jet.Homework:P190-p3.46P191-p3.50P192-p3.54P192-p3.58Derivethethrust(推力)equationforthejetengine.airdragisneglectSolution::massfluxoffuelxBalancewiththrustCoordinate,CV

Example:Inagroundtestofajetengine,pa=1.0133×105N/m2,Ae=0.1543m2,Pe=1.141×105N/m2,Ve=542m/s,.Findthethrustforce.Solution:F16R=65.38KNxcoordinateArocketmovingstraightup.LettheinitialmassbeM0,andassumeasteadyexhaustmassflowandexhaustvelocityverelativetotherocket.Iftheflowpatternwithintherocketmotorissteadyandairdragisneglect.Derivethedifferentialequationofverticalrocketmotionv(t)andintegrateusingtheinitialconditionv=0att=0.Example:Solution:TheCVenclosetherocket,cutsthroughtheexitjet,andacceleratesupwardatrocketspeedv(t).coordinatezv(t)Z-momentumequation:v(t)z3.5TheAngular-MomentumEquation(Angular-Momentum):Netmoment(合力矩)Example:Centrifugal(離心)pumpThevelocityofthefluidischangedfromv1tov2anditspressurefromp1top2.Find(a).anexpressionforthetorqueT0whichmustbeappliedthosebladestomaintainthisflow.(b).thepowersuppliedtothepump.

blade

wForincompressibleflow1-DContinuity:Solution:TheCVischosen.blade

w

PressurehasnocontributiontothetorquearebladerotationalspeedsWorkonperunitmassHomework:P192-p3.55;P194-p3.68,p3.78;P200-p3.114,p3.116

BriefReviewBasicPhysicalLawsofFluidMechanics:TheReynoldsTransportTheorem:TheLinearMomentumEquation:TheAngular-MomentumTheorem:ConservationofMass:ReviewofFluidStaticsEspecially:

Question

Whenfluidflowing…

Bernoulli(1700~1782)Whatrelationsarethereinvelocity,heightandpressure?SeveralTragediesinHistory:

Alittlerailwaystationin19thRussia.The‘Olimpic’shipwreckinthePacificThebumpingaccidentofB-52bomberoftheU.S.airforcein1960s.3.6FrictionlessFlow:

TheBernoulliEquation1.DifferentialFormofLinearMomentumEquationElementalfixedstreamtubeCVofvariableareaA(s),andlengthds.Linearmomentumrelationinthestreamwisedirection:one-D,steady,frictionlessflowForincompressibleflow,r=const.Integralbetweenanypoints1and2onthestreamline:AQuestion:

IstheBernoulliequationamomentumorenergyequation?Hydraulicandenergygradelinesforfrictionlessflowinaduct.Example1:Findarelationbetweennozzledischargevelocityandtankfree-surfaceheighth.Assumesteadyfrictionlessflow.1,2maximuminformationisknownordesired.h12V2Solution:h12V2Continuity:Bernoulli:Torricelli1644AccordingtotheBernoulliequation,thevelocityofafluidflowingthroughaholeinthesideofanopentankorreservoirisproportionaltothesquarerootofthedepthoffluidabovethehole.Thevelocityofajetofwaterfromanopenpopbottlecontainingfourholesisclearlyrelatedtothedepthofwaterabovethehole.Thegreaterthedepth,thehigherthevelocity.ReviewofBernoulliequationThedimensionsofabovethreeitemsarethesameoflength!Example1:Findarelationbetweennozzledischargevelocityandtankfree-surfaceheighth.Assumesteadyfrictionlessflow.V2h12

Example2:Findvelocityintherighttube.hABInlikemanner:VExample3:FindvelocityintheVenturitube.12AsafluidflowsthroughaVenturitube,thepressureisreducedinaccordancewiththecontinuityandBernoulliequations.Example4:Estimaterequiredtokeeptheplateinabalancestate.(Assumetheflowissteadyandfrictionless.)Solution:Forplate,bylinealmomentumequation,byBernoulliequation,Example5:Firehose,Q=1.5m3/minFindtheforceonthebolts.1122Solution:Bycontinuity:ByBernoulli:1122Bymomentum:Example6:Findtheaero-forceontheblade (cascade).ABDCSSSolution:ABDCSSBycontinuity,葉片越彎,做功量越大。ABDCSSByBernoulli,BernoulliEquationforcompressibleflowSpecific-heatratioForisentropicflow:GasWeightneglectFornozzle:Fordiffuser:ExtendedBernoulliEquationForcompressor

多變壓縮功Forturbine

多變膨脹功Homework!Page206:P3.158,P3.161Page207:P3.164,P3.165《氣體動(dòng)力學(xué)》第二章習(xí)題第一部分:Page2033題Reviewofexamples:V12AnalysisChooseyourcontrolvolumnBodyforceandSurfaceforceSolution1122xFindtheaero-forceontheblade (cascade).葉片越彎,做功量越大。ABDCSSByBernoulli,3.7TheEnergyEquation

ConservationofEnergyVarioustypesofenergyoccurinflowingfluids.Workmustbedoneonthedeviceshowntoturnitoverbecausethesystemgainspotentialenergyastheheavy(dark)liquidisraisedabovethelight(clear)liquid.Thispotentialenergyisconvertedintokineticenergywhichiseitherdissipatedduetofrictionasthefluidflowsdownramporisconvertedintopowerbytheturbineanddissipatedbyfriction.Thefluidfinallybecomesstationaryagain.Theinitialworkdoneinturningitovereventuallyresultsinaveryslightincreaseinthesystemtemperature.

EnergyPerUnitMass1122eFirstLawsofThermodynamicsConservationofEnergy1122Theenergyequation!Example:Asteadyflowmachinetakesinairatsection1anddischargeditatsection2and3.Thepropertiesateachsectionareasfollows:sectionA,Q,T,P,PaZ,m10.042.82110000.320.091.13814401.230.021.4100?0.4CV(1)(2)(3)110KWWorkisprovidedtothemachineattherateof110kw.Findthepressure(abs)andtheheattransfer.AssumethatairisaperfectgaswithR=287,Cp=1005.Solution:Massconservation:Byenergyequation:CV(1)(2)(3)110KW124Chapter4DifferentialRelationsForViscousFlow4.1PreliminaryRemarks*

TwowaysinanalyzingfluidmotionSeekinganestimateofgrosseffectsoverafiniteregionorcontrolvolume.

Integral

(2)Seekingthepoint-by-pointdetailsofaflowpatternbyanalyzinganinfinitesimalregionoftheflow.

Differential125TurbulentFlow

VS.

LaminarFlow*

TwoformsofflowTurbulent(湍,紊)flow,laminar(層)flow*

ViscousflowViscosityisinherentnatureofrealfluid.Strain(剪切)isverystrongininternalflow.TransitionReynolds

numberOsbroneReynoldsReynoldstank慣性力/粘性力1264.2TheAccelerationFieldofaFluidLocalaccelerationunsteadyConvectiveaccelerationnonuniformNonlinearterms127InthelikemannerAnypropertyΦSubstantial(Material)derivative隨體(物質(zhì)、全)導(dǎo)數(shù)128ExampleGiven.Findtheaccelerationofaparticle.129Xinlet(massflow)XoutletdxyzxdzdyInfinitesimalfixedCVXflowout4.3DifferentialEquationofMassConservationInthelikemanner

FlowoutofftheCV130LossofmassintheCV131ForsteadyflowForincompressibleflowExample1Underwhatconditionsdoesthevelocityfieldrepresentsanincompressibleflowwhichconservesmass?(where)132SolutionContinuityforincompressibleflowExample2Anincompressiblevelocityfield:u=a(x2-y2),w=b,a,bareconst,whatv=?SolutionAnarbitraryfunctionofx,z,t133Assignment:P264:P4.1(a),P4.2,P4.4,P4.9(a)134Newton’ssecondlaw4.4DifferentialEquationofLinearMomentumdxdzdyElementalvolumeWhatarethesurfaceforcesFs

ontheelementalvolume?135Surfaceforceonanelementalvolume:dxdzdyVectorSumSurfacestressNetSurfaceForce:136MomentumequationInthelikemannerItisnotthesestressesbuttheirgradient,whichcauseanetforceonthedifferentialvolume.137Tensor

張量138ConstitutiveRelation

本構(gòu)Newton’sLaw(廣義牛頓內(nèi)摩擦定律)

Momentumequation(角標(biāo)表示法)139SubstituteNewton’sConstitutiveRelationintoMENewtonfluid,linearfluid(牛頓流體,線性流體)140N-SEquation141ForincompressibleflowForinviscidflowFor2-D,steady,incompressibleflow1421434.5TheDifferentialEquationofEnergyInfinitesimalfluidelementdxdzdyThefirstthermodynamiclaw144(1)Thermalconductivity(2)othersX:HeatflowdxdydzAccordingFourier’sLaw:145質(zhì)量力做功和表面力做功Bodyforce146SurfaceforcedxdydzX:X:NetpowerY,Z147NetpowerbyFsleft148單位體積內(nèi)能變化率熱傳導(dǎo)等傳熱變型時(shí)表面應(yīng)力做功149變型時(shí)表面應(yīng)力做功壓力做膨脹功粘性耗散Φ>0由連續(xù)方程:根據(jù)熱力學(xué)公式,熵s、焓h和壓強(qiáng)p、密度ρ的關(guān)系為:150已知D?=CvDT,Dh=CpDT151SummaryoftheEquations152153154equationunknownvariablescontinuity1r,u,v,wmomentum3p,ru,v,wenergy1p,ru,v,w,Tperfectgas1p,r,TToSolveAFlow…1554.6Initial(初始)andBoundary(邊界)ConditionsfortheBasicEquationsInitialConditions:t=t0

:BoundaryConditions:(Noslip)VelocityWallIfthewallisstationaryTemperature156DuetothehighlycomplexoftheN-Sequations,onlyafewparticularsolutionswerefounduptonow.Formostproblems,theequationsmustbesolvednumerically,whichisabrandnewcoursecalledCFD(ComputationalFluidDynamics)

Flowpassacylinder

Anexperimentresult

AcomputationresultSolvingtheN-Sequationsnumerically157xyohhUFlowbetweentwoparallelwalls,Steady,incompressible,neglectbodyforce,2-DContinuity:Momentum:4.7

ExactsolutionsofN-SEquations158=constantIntegraterelativetoyBoundarycondition:xyohhU159Applytheboundaryconditionxyoh-hu(y)Uxyoh-hWhenU=0PoiseuilleflowWhenSimpleCouetteflow160WhenWhenConsideraspecialcaseGeneralcase:yxoUxyoUxoyU161Q=0:yxoVolumeflowrateQ=u*dy162Thewallshearstresses1634.8DynamicalSimilarity&NondimensionalizationFlowpassacylinder

D=5cm

D=10cmMeasurementforWingtipvortex164N-Sequation,2-D,steady,nobodyforce,incompressibleUseU,LasreferencevelocityandlengthDimensionlessquantitiesxdirection:4.8.1NondimensionalizationofN-SEquation165Boundaryconditionsneedtobenormalizedtoo…166Forsteady,incompressible,nobodyforceflow,iftwogeometricallysimilarflowfieldshassameReynoldsnumber,thentheyhavesimilarflowstructurewhensameboundaryconditionsareprovided.WhyReynoldsnumber?167Inertiaforce/viscousforce兩個(gè)鐵球同時(shí)落地?168Flowpassacylinder

D=5cm

D=10cmFlowpassasquare

Re=50

Re=10000Theflowfieldsfortwoobjectsofthesameshapebutdifferentsizearesaidtobegeometricallysimilar.If,inaddition,theReynoldsnumberarethesame,thetwoflowsaresaidtobedynamicallysimilar,sincetheratioofrelevantforcesarethesameinthetwocases.4.8.2D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論