版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
前向人工神經(jīng)網(wǎng)絡(luò)敏感性研究曾曉勤河海大學(xué)計(jì)算機(jī)及信息工程學(xué)院2003年10月1一.引言
1.前向神經(jīng)網(wǎng)絡(luò)(FNN)介紹●神經(jīng)元
–
離散型:自適應(yīng)線性元(Adaline)–
連續(xù)型:感知機(jī)(Perceptron)●神經(jīng)網(wǎng)絡(luò)
–
離散型:多層自適應(yīng)線性網(wǎng)(Madaline) –
連續(xù)型:多層感知機(jī)(BP網(wǎng)或MLP)2
●問題 –硬件精度對(duì)權(quán)的影響
–環(huán)境噪音對(duì)輸入的影響 ●動(dòng)機(jī)
–
參數(shù)的擾動(dòng)對(duì)網(wǎng)絡(luò)會(huì)產(chǎn)生怎樣影響?
–
如何衡量網(wǎng)絡(luò)輸出偏差的大?。?.研究提出3 ●建立網(wǎng)絡(luò)輸出與網(wǎng)絡(luò)參數(shù)擾動(dòng)之間的關(guān)系
●分析該關(guān)系,揭示網(wǎng)絡(luò)的行為規(guī)律
●量化網(wǎng)絡(luò)輸出偏差3.研究內(nèi)容4
●指導(dǎo)網(wǎng)絡(luò)設(shè)計(jì),增強(qiáng)網(wǎng)絡(luò)抗干擾能力 ●度量網(wǎng)絡(luò)性能,如容錯(cuò)和泛化能力 ●研究其它網(wǎng)絡(luò)課題的基礎(chǔ),如網(wǎng)絡(luò)結(jié)構(gòu)的 裁剪和參數(shù)的挑選等4.研究意義5Madaline的敏感性
●n維幾何模型(超球面)
M.Stevenson,R.Winter,andB.Widrow,
“SensitivityofFeedforwardNeuralNetworks
toWeightErrors,”IEEETrans.onNeural,
Networks,vol.1,no.1,1990. ●統(tǒng)計(jì)模型(方差)
S.W.Piché,“TheSelectionofWeight AccuraciesforMadalines,”IEEETrans.on NeuralNetworks,vol.6,no.2,1995.二.研究縱覽(典型方法和文獻(xiàn))
6
●分析方法(偏微分)
S.Hashem,“SensitivityAnalysisforFeed- ForwardArtificialNeuralNetworkswith DifferentiableActivationFunctions”,Proc. ofIJCNN,vol.1,1992. ●統(tǒng)計(jì)方法(標(biāo)準(zhǔn)差) J.Y.Choi&C.H.Choi,“SensitivityAna- lysisofMultilayerPerceptronwithDiffer- entiableActivationFunctions,”IEEETrans. onNeuralNetworks,vol.3,no.1,1992.2.MLP的敏感性7 ●輸入屬性篩選 J.M.Zurada,A.Malinowski,S.Usui, “PerturbationMethodforDeletingRedundant InputsofPerceptronNetworks”, Neurocomputing,vol.14,1997. ●網(wǎng)絡(luò)結(jié)構(gòu)裁減
A.P.Engelbrecht,“ANewPruningHeuristic BasedonVarianceAnalysisofSensitivity Information”,IEEETrans.onNeural Networks,vol.12,no.6,2001.3.敏感性的應(yīng)用8
J.L.Bernieretal,“AQuantitiveStudyof FaultTolerance,NoiseImmunityand GeneralizationAbilityofMLPs,”Neural Computation,vol.12,2000.
●容錯(cuò)和泛化問題9三.研究方法1.自底向上方法
●單個(gè)神經(jīng)元
●整個(gè)網(wǎng)絡(luò)2.
概率統(tǒng)計(jì)方法
●概率(離散型)
●均值(連續(xù)型)3.n-維幾何模型
●超矩形的頂點(diǎn)(離散型)
●超矩形體(連續(xù)型)10四.已獲成果(代表性論文)
●敏感性分析:
“SensitivityAnalysisofMultilayerPercep- trontoInputandWeightPerturbations,” IEEETrans.onNeuralNetworks,vol.12, no.6,pp.1358-1366,Nov.2001.
11
●敏感性量化:
“AQuantifiedSensitivityMeasureforMulti- layerPerceptrontoInputPerturbation,” NeuralComputation,vol.15,no.1, pp.183-212,Jan.2003.
12 ●隱層節(jié)點(diǎn)的裁剪(敏感性應(yīng)用):
“HiddenNeuronPruningforMultilayer
PerceptronsUsingSensitivityMeasure,” Proc.ofIEEEICMLC2002,pp.1751-1757, Nov.2002.
●輸入屬性重要性的判定(敏感性應(yīng)用):
“DeterminingtheRelevanceofInput FeaturesforMultilayerPerceptrons,” Proc.ofIEEESMC2003,Oct.2003.13五.未來工作
●進(jìn)一步完善已有的結(jié)果,使之更加實(shí)用
–放松限制條件
–
擴(kuò)大分析范圍
–精確量化計(jì)算
●進(jìn)一步應(yīng)用所得的結(jié)果,解決實(shí)際問題
●探索新方法,研究新類型的網(wǎng)絡(luò)14結(jié)束謝謝各位!151617181920Effectsofinput&weightdeviationsonneurons’sensitivitySensitivityincreaseswithinputandweighdeviations,buttheincreasehasanupperbound.21Effectsofinputdimensiononneurons’sensitivity
Thereexistsanoptimalvalueforthedimensionofinput,whichyieldsthehighestsensitivityvalue.22Effectsofinput&weightdeviationsonMLPs’sensitivity
SensitivityofanMLPincreaseswiththeinputandweightdeviations.23EffectsofthenumberofneuronsinalayerSensitivityofMLPs:{n-2-2-1|1n10}tothedimensionofinput.
24SensitivityofMLPs:{2-n-2-1|1n10}tothenumberofneuronsinthe1stlayer.25SensitivityofMLPs:{2-2-n-1|1n10}tothenumberofneuronsinthe2ndlayer.
Thereexistsanoptimalvalueforthenumberofneuronsinalayer,whichyieldsthehighestsensitivityvalue.Theneareralayertotheoutputlayeris,Themoreeffectthenumberofneuronsinthelayerhas.26EffectsofthenumberoflayersSensitivityofMLPs:{2-1,2-2-1,..,2-2-2-2-2-2-2-2-2-2-1}tothenumberoflayers.
Sensitivitydecreaseswiththenumberincreasing,andthedecreasealmostlevelsoffwhenthenumberbecomeslarge.27Sensitivityoftheneuronswith2-dimensionalinput28Sensitivityoftheneuronswith3-dimensionalinput29Sensitivityoftheneuronswith4-dimensionalinput30Sensitivityoftheneuronswith5-dimensionalinput31SensitivityoftheMLPs:2-2-1,2-3-1,2-2-2-1
32
Simulation1(FunctionApproximation)ImplementanMLPtoapproximatethefunction:
whereImplementationconsiderationsTheMLParchitectureisrestrictedto2-n-1.TheconvergenceconditionisMES-goal=0.01&Epoch105.Thelowesttrainablenumberofhiddenneuronsisn=5.ThepruningprocessesstartwithMLPsof2-5-1andstopatanarchitectureof2-4-1.TherelevantdatausedbyandresultedfromthepruningprocessarelistedinTable1
andTable2.33TABLE1.Datafor3MLPswith5hiddenneuronstorealizethefunctionMLP2-5-1EpochMSE(training)MSE(testing)TrainedweightsandbiasMSE-(goal=0.01&epoch<=100000)Sensitivity
Relevance
1
30586
0.000999816
0.0117005[-12.9212-0.2999][33.7943-34.6057][31.4768-31.0169][-0.5607-0.8140][1.1737-1.1026][-5.450712.7341-13.0816-12.01718.7152]bias=00.0317940.0022720.0014060.0270660.0018150.17330.02890.01840.32530.0158
2
65209
0.000999959
0.0124573[32.6223-33.3731][-0.73610.7202][-31.841231.2399][-15.1872-0.0937][-0.3989-1.0028][11.9959-15.490512.2103-6.0877-12.5057]bias=00.0021760.0004630.0018210.0310170.0270680.02610.00720.02220.18880.3385
3
26094
0.000999944
0.0120354[-15.094017.6184][-19.916321.4109][-14.0535-0.8460][1.0263-0.1258][26.7757-26.1259][8.8172-18.6532-6.830716.8506-10.4671]bias=00.0135470.0066610.0262200.0283520.0023240.11940.12420.17910.47770.024334TABLE2.Dataforthe3prunedMLPswith4hiddenneuronstorealizethefunctionMLP2-4-1EpochMSE(training)MSE(testing)Retrainedweightsandbias(goal=0.01&epoch<=100000)SensitivityRelevance1(Obtainedbyremovingthe5thneuronfromtheMLPof2-5-1)
2251
0.000999998
0.0114834[-14.4387-0.7003][34.8366-35.6080][33.1285-32.6271][-1.50650.0184][-5.703613.0579-13.2457-12.1803]bias=4.23490.0270140.0021000.0014600.0313430.15410.02740.01930.38182(Obtainedbyremovingthe2ndneuronfromtheMLPof2-5-1)
1945
0.000999921
0.0119645[33.5805-34.2727][-32.931332.3172][-15.8016-0.5610][-1.33180.0103][12.626712.7961-6.1782-13.3652]bias=-7.94680.0019540.0018000.0269020.0292830.02470.02300.16620.39143(Obtainedbyremovingthe5thneuronfromtheMLPof2-5-1)
13253
0.000999971
0.011926[-34.397433.8148][-34.325034.7990][-1.29090.0198][11.80970.8879][15.7984-15.6503-12.96066.0722]bias=-1.41940.0016370.0013160.0288340.0281220.02590.02060.37370.170835
Simulation2(Classification)ImplementanMLPtosolvetheXORproblem:
0
1ImplementationconsiderationsTheMLParchitectureisrestrictedto2-n-1.TheconvergenceconditionisMES-goal=0.1&Epoch105.ThepruningprocessesstartwithMLPsof2-5-1andstopatanarchitectureof2-4-1.TherelevantdatausedbyandresultedfromthepruningprocessarelistedinTable3
andTable4.36TABLE3.Datafor3MLPswith5hiddenneuronstorealizethefunctionMLP2-5-1EpochMSE(training)MSE(testing)Trainedweightsandbias(goal=0.1&epoch<=100000)SensitivityRelevance
1
44518
0.0999997
0.109217[2.8188-8.1143][2.4420-0.5450][2.57663.7037][1.4955-2.9245][-2.5714-3.7124][14.0153-43.990728.063619.5486-68.6432]bias=00.0475990.0357470.0315180.0273550.0315130.66711.57250.88450.53482.1632
2
51098
0.0999998
0.113006[1.4852-3.8902][1.06920.1466][-1.0723-0.1455][-7.03012.5695][-3.1382-2.8094][23.9314-19.182427.156514.9694-91.6363]bias=00.0375930.0201700.0201780.0455040.0325500.89970.38690.54800.68122.9828
3
33631
0.0999994
0.11369[3.29202.9094][-1.00673.4724][-7.05782.4377][-3.2921-2.9096][1.5303-0.0606][45.7579-30.059816.5386-52.2874-29.7040]bias=00.0314980.0391660.0462100.0314970.0317151.44131.17730.76421.64690.942137
TABLE4.Dataforthe3prunedMLPswith4hiddenneuronstorealizethefunction
MLP2-4-1EpochMSE(training)MSE(testing)Retrainedwei
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 土木工程中的建筑結(jié)構(gòu)給水工程考核試卷
- 《口腔衛(wèi)生》課件
- 2024并購貸款合同模板
- 企業(yè)安全生產(chǎn)培訓(xùn)的團(tuán)隊(duì)協(xié)作與沖突化解考核試卷
- 《古代中國的經(jīng)濟(jì)》課件
- 求婚策劃方案及流程
- 固體飲料行業(yè)的投資風(fēng)險(xiǎn)分析考核試卷
- 木材創(chuàng)新技術(shù)與環(huán)保應(yīng)用案例研究探討考核試卷
- 信息系統(tǒng)性能優(yōu)化建議報(bào)告總結(jié)考核試卷
- 印刷行業(yè)的品牌保護(hù)與市場(chǎng)競(jìng)爭考核試卷
- 2024年宏觀經(jīng)濟(jì)發(fā)展情況分析報(bào)告
- 攝影入門課程-攝影基礎(chǔ)與技巧全面解析
- 251直線與圓的位置關(guān)系(第1課時(shí))(導(dǎo)學(xué)案)(原卷版)
- XX有限公司人員分流方案
- 大語言模型賦能自動(dòng)化測(cè)試實(shí)踐、挑戰(zhàn)與展望-復(fù)旦大學(xué)(董震)
- 期中模擬檢測(cè)(1-3單元)2024-2025學(xué)年度第一學(xué)期西師大版二年級(jí)數(shù)學(xué)
- 追覓科技在線測(cè)評(píng)邏輯題
- 2024-2030年中國演藝行業(yè)發(fā)展分析及發(fā)展前景與趨勢(shì)預(yù)測(cè)研究報(bào)告
- 2024年重慶市渝北區(qū)數(shù)據(jù)谷八中小升初數(shù)學(xué)試卷
- 凝中國心鑄中華魂鑄牢中華民族共同體意識(shí)-小學(xué)民族團(tuán)結(jié)愛國主題班會(huì)課件
- 2024年AI大模型場(chǎng)景探索及產(chǎn)業(yè)應(yīng)用調(diào)研報(bào)告-前瞻
評(píng)論
0/150
提交評(píng)論