版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年安徽省池州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.e2
B.e-2
C.1D.0
2.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)
B.f(x)在點(diǎn)x0必定不可導(dǎo)
C.
D.
3.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定
4.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
5.
6.A.-cosxB.-ycosxC.cosxD.ycosx
7.
8.
9.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny
B.3y3xlny
C.3xy3x
D.3xy3x-1
10.()。A.
B.
C.
D.
11.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx12.
設(shè)f(x)=1+x,則f(x)等于()。A.1
B.
C.
D.
13.
14.
15.
16.
17.
18.()。A.
B.
C.
D.
19.設(shè)y=2x,則dy=A.A.x2x-1dx
B.2xdx
C.(2x/ln2)dx
D.2xln2dx
20.A.A.1B.2C.3D.4二、填空題(20題)21.
22.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
23.
24.
25.
26.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.設(shè)z=xy,則dz=______.
三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.
42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.將f(x)=e-2X展開為x的冪級(jí)數(shù).44.求微分方程的通解.45.46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.47.
48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.49.
50.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.53.求曲線在點(diǎn)(1,3)處的切線方程.54.證明:55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
56.
57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
58.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
59.
60.四、解答題(10題)61.62.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.63.用洛必達(dá)法則求極限:64.(本題滿分8分)
65.
66.
67.
68.
69.
70.求二元函數(shù)z=x2-xy+y2+x+y的極值。
五、高等數(shù)學(xué)(0題)71.已知同上題若產(chǎn)品以每件500元出售,問:要使利潤最大,應(yīng)生產(chǎn)多少件?
六、解答題(0題)72.
參考答案
1.A
2.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
3.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。
4.DA,∫1+∞xdx==∞發(fā)散;
5.B
6.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。
7.B
8.A
9.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
z=y3x
是關(guān)于y的冪函數(shù),因此
故應(yīng)選D.
10.C
11.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
12.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。
13.B
14.D
15.B
16.D
17.D
18.D
19.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。
20.D
21.
22.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。
23.
24.
25.
26.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。27.0
28.
29.2
30.(12)(01)
31.00解析:
32.3
33.-ln|3-x|+C
34.11解析:
35.
36.dx
37.x(asinx+bcosx)
38.π/4
39.
解析:
40.yxy-1dx+xylnxdy
41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
42.
43.
44.
45.
46.
47.由一階線性微分方程通解公式有
48.由二重積分物理意義知
49.
則
50.51.函數(shù)的定義域?yàn)?/p>
注意
52.
53.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.
55.
列表:
說明
56.57.由等價(jià)無窮小量的定義可知
58.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
59.
60.
61.
62.
63.64.本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年租賃合同租金調(diào)整及維修責(zé)任
- 2024版房地產(chǎn)買賣及租賃合同
- 如何做到合理膳食與健康
- 2024貸款分款協(xié)議書
- 2024年高端化妝品市場exclusivity合同
- 四川三河職業(yè)學(xué)院《馬克思主義經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年高端智能設(shè)備采購與技術(shù)轉(zhuǎn)讓合同
- 防水施工監(jiān)理旁站記錄
- 電氣培訓(xùn)資料:電纜敷設(shè)方式與代號(hào)
- 銅仁幼兒師范高等??茖W(xué)?!端帉W(xué)外語》2023-2024學(xué)年第一學(xué)期期末試卷
- 中考英語復(fù)習(xí)分析如何寫英語高分作文課件
- 自然科學(xué)基金項(xiàng)目申報(bào)書(模板)
- 中華詩詞之美學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- GB/T 44273-2024水力發(fā)電工程運(yùn)行管理規(guī)范
- 浙江省杭州市余杭區(qū)2023-2024學(xué)年二年級(jí)上學(xué)期期末語文試題
- 羅定市2024屆小升初必考題數(shù)學(xué)檢測卷含解析
- 傳媒互聯(lián)網(wǎng)行業(yè)幣價(jià)影響因素分析:對(duì)比利率、M2、納指、美元指數(shù)、黃金走勢
- 反射療法師技能大賽考試題庫及答案
- 2024羽毛球教案36課時(shí)
- 《安全評(píng)價(jià)技術(shù)》課件-蒸氣云爆炸事故后果傷害模型評(píng)價(jià)
- DL∕T 1100.1-2018 電力系統(tǒng)的時(shí)間同步系統(tǒng) 第1部分:技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論