版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
StateKeyLaboratoryofOptoelectronicMaterialsandTechnologies,SunYat-senUniversity,Guangdong,Guangzhou510275,China周建英光場調(diào)控:基礎(chǔ)、應(yīng)用與產(chǎn)業(yè)發(fā)展2015.10.21E-mail:Website:http:///qoe/Index.aspOutline遠(yuǎn)場線性成像光學(xué)分辨物理新極限;
——PRL,113263901(2014)光場傳輸控制、醫(yī)學(xué)光學(xué)與腦瘤精準(zhǔn)治療;——BioOE,6,2237-(2015)視場角大于180度的光學(xué)成像系統(tǒng);裸眼3D顯示技術(shù)研發(fā)與產(chǎn)業(yè)化進(jìn)展displaywithFree-formbacklightsurface空間光場結(jié)構(gòu)調(diào)控技術(shù):振幅、位相調(diào)控方法光合成原理②③yzx①θO④OpticalNanoscopy:Introductionhttp:///qoe/Index.aspApplicationsMicroscopy,Bio&Medicalimaging,Datastorage,Nanolithographyetc.
ErnstAbbe(1873)stipulatedaphysicallimitforthemaximumresolutionoftraditionalopticalmicroscopy:OpticalMicro/Nano-scopyhttp:///qoe/Index.aspMethodsforingthediffractionlimitNearfield(usingevanescentwaves):Nearfieldscanningopticalmicroscopy(SNOM)Negativemetamaterial(VeselagoandPendrysuperlens)Hyperbolicmetamaterial(Hyperlens)MetalensFar-field(modulatingthelightfield):Decreasingthewavelength(nonlinearmedia,SPPs,SIL…)Structuralandtemporalwithfluorescence(STED,STORM,SIM…)Superoscillations(nanoholearrays)OpticalNanoscopyhttp:///qoe/Index.aspEricBetzigStefanW.HellWilliamE.MoernerTheNobelPrizeinChemistry2014forhavingbypassedthislimit.Duetotheirachievementstheopticalmicroscopecannowpeerintothenanoworld,nanoscopewithdual-beam.EricBetzig,StefanW.Hell&WilliamE.MoernerOpticalNanoscopyhttp:///qoe/Index.aspThreequestionWhatistheultimateresolutionofafar-field,linearopticalmicroscopy?Canthetechniqueworkfornon-fluorescent,transparentsamples?Artifact-freenanoscopy?Foralinearsystemwithsufficientsmallpinhole:——ThePrincipleofNanoOptics,(CambridgeUniversity,2006).Shaperfocus?Principleofconfocalmicroscopyhttp:///qoe/Index.aspOpticalNanoscopylightsourcepinholeTheresponseofanilluminationsystemtoapointlightsourceisanextendedblob,namedexcitationpointspreadfunction(PSF),normallyanAirydisk.Principleofconfocalmicroscopyhttp:///qoe/Index.aspOpticalNanoscopyShaperfocus?pinholelightsourcephotocellpinholeTheresponseofanimagingsystemtoapointobjectisanextendedblob,nameddetectionPSF.OpticalNanoscopyhttp:///qoe/Index.aspModulationforsharperfocusPhys.Rev.Lett.91,233901(2003).Thespotisreducedto0.16λ2(0.4λ)Forlinearpolarization0.26λ2(0.51λ)FWHM=0.4
λ,totaldepthoffocus~4λNaturePhotonics,2,501(2008).Thebeamwaistisreducedto0.7timesOpt.Express,15,6409(2007).Amplitude
Phase
Phase&litude
OpticalNanoscopyhttp:///qoe/Index.aspModulationforsharperfocusRadialpolarization:mostsuitabletoproducethesmallestspotapproachingthediffractionlimitof0.36λ/NARzimuthalpolarizationisthemostsuitableonetoobtainthediffractionboundeddarkspotwithFWHM0.29λ/NA.PolarizationPhaseRingapertureKhonina,J.Opt.Soc.Am.A29,1470(2012).OpticalNanoscopyhttp:///qoe/Index.aspCanRPbeambeappliedtoconfocalmicroscopy?pinholelightsourcephotocellpinholeTheexcitationPSFisasolidspot,whilethedetectionPSFisinadoughnutshape,whichresultsadarkfieldimagefortheconfocalsystem.DetectionPSFExcitationPSFOpticalNanoscopyhttp:///qoe/Index.aspModulationforthedetectionPSFphotocellpinholeExcitationPSFApolarizationconversionfortheradiallypolarizedilluminationwasproposed.Opt.Lett.34,2147–2149(2009).polarizationconvertorByinsertingapolarizationconvertor:
Rad.Azi.Lin.xLin.yDetectionPSFOpticalNanoscopyhttp:///qoe/Index.aspExperimentalsetupConfocalsystemonanactivevibrationisolationsystem(TS-150,Germany).
Pol.Convector(ARCoptix,Switzerland)pinhole&detectortubelenslaserinfiberPol.ConvectorringapertureAdoubleknifeedge(DKE)methodisintroducedtomeasurethebeamprofile.AIPAdv.3,022110(2013)Linearinx.532nmOpticalNanoscopyhttp:///qoe/Index.aspDoubleknifeedgesforsharperfocusmeasurementI(x’,y’)P(y2)Q(y2)P(y3)Q(y3)P(y1)x1x2x3xnQ(y1)x1x2x3xnOpticalNanoscopyhttp:///qoe/Index.aspDoubleknifeedgestechniqueOpticalNanoscopyhttp:///qoe/Index.aspDoubleknifeedgestechniqueMeasurementforlinearpolarizedbeam,a)
reflection,b)transmission,c)curvefittingandd)crosssectioncomparisionwiththeory.Knownbeam:SurfacefittingBeamprofiles(A)indifferentfocalplanesand(B)withpartialblockedincidentbeams
X.S.Xieetal,AIPAdv.3,022110(2013).(A)(B)Unknownbeam:FiltingandderivationsOpticalNanoscopyhttp:///qoe/Index.aspModulationforsharperfocusFig.1.experimentalsetupwithdifferentringaperturesThepolarizationpuritywasmeasuredbeforesharperfocusing.ThepuritiesoftheRPbeamis95%.OpticalNanoscopyhttp:///qoe/Index.aspModulationforsharperfocus00.450.910.98DKEscanningimagesandthereconstrutionbeamprofileds,eachimagesis2um*2uminsize.DKE
reconstru.theoryTheminimizedfocusedbeam:0.07112(0.42/NA).
Diffractioneffectshouldbeconsideredwithsmalltopographystructures.Opt.Lett.38,1331(2013).Intheory,thehigherδ,
thesharperfocus.δOpticalNanoscopyhttp:///qoe/Index.aspImagingwithacommercialmicroscopytestsample:latexspheresprojection.(581nmdiametersphere)WidefieldViewConfocal(transmission)Confocal(reflection)Theextremelyresolutionoftheoriginalconfocalsystemis250nm.Thetrianglesaligntilted~3°withthescanningdirectionalongxaxis.ThesphereholesturnintoellipticbecausethePSFiselongatinginthedirectionofpolarizationwiththeLPincidentlightbeam.LaserLinearinx.532nmOpticalNanoscopyhttp:///qoe/Index.aspModulationforthedetectionPSF(a)SEMimage(b)RPbeam(δ~0.8)(c)APbeam(δ~0.8)(d)originalimage(e)RPbeam(δ~0.8)(f)APbeam(δ~0.8)Comparisionbetweenexperimentandtheory.Thelocationofthetiltedtrianglescanbeidentifiedbecauseofthe~3°tilting.Theinsertedimagesin(e)and(f)arethePSFs.OpticalNanoscopyhttp:///qoe/Index.aspCrosssectionoftheexperimentalresultFig.(f)showthecrosssectionof(d)witharesolutionof115nmat532nm,about(1/5λ).Pinhole(12.5um),OpticalNanoscopyhttp:///qoe/Index.aspComparingwithSNOM[1]Molendaetal,Opt.Express13,10688(2005)ApertureSNOMtipsize,<90nmElectricfielddistributionattipTransmissionSNOMAFMtriangleaperturelessNSOM,tip~30nm[1]Electricfielddistribution[1]AlphaSNOM300S,WitecGmbH.TransmissionSNOMAFMHomebuildSNOMinMuensterUniversity,Germany,450nmdiameterspheresOpticalNanoscopyhttp:///qoe/Index.aspFutureworkResolutionover70nmorlesscanbeachievedinvisibleregion,e.g.,at405nm.Solidimmersionlenscanenhancetheresolutionevenfurther.Multi-functionalmicroscopy:spectral-resolved,phase-contrastimaging,time-resolved.ScanningspeedimprovementwithanoscillatingmirrorOpticalNanoscopyhttp:///qoe/Index.aspConclusionThesharpestfocusobtainedis0.07112(inoil),whichcanberegardedastheexcitationPSF.BymodulatingboththeexcitationanddetectionPSFs,1/5λresolutionoffarfieldimagingisachievedincommonoil(n=1.5),andcanbefurtherimprovedto1/6λ.Nopriorknowledgeaboutthepropertiesofthesampleisneeded.LessartifactsthanLPbeamilluminationandSNOM
becauseofthecylindricalsymmetryinpolarizationandfieldstrength.EasytobeequippedinanormalCLSMandcompatiblewithotherresolutionenhancementtechniques.Techniquecanworkwithlargeamountofsamples,eventransparentsamplesforsub-100nmmeasurement.DONOTBUYSNOMHarnessinglightfieldforbrainhttp:///qoe/Index.aspLightdiagnosisandtherapyforbraintumorBrainstructurePreciselytargetedthermaltherapyLightpennetrationthroughturbidmaterial(ratduramater)Multi-inputinglightdiffusion,mimictoGammaknifeAccuratelightheatingtowardsbraintumorHarnessinglightfieldforbrainhttp:///qoe/Index.aspStructureofBrainDuramater,ordura,thickmembrane:0.24-0.4
mm.
Harnessinglightfieldforbrainhttp:///qoe/Index.aspImagingafterscatteringmaterials
Bymodifyingtherelativephasefrontoftheincidentbeams,arandommediumcanbetransformedintoalensaspatial-temporalpulseshaperanactivespectralfilteranarbitrarypolarizationconvertorascatteringimagingsystemHarnessinglightfieldforbrainhttp:///qoe/Index.aspVariousapplicationsVellekoopet.al.,NatPhoton4,320(2010).Vellekoopet.al.,PRL.101(12),120601(2008)Focusingintoaspottentimessmallerthanthediffractionlimitofthelens.Focusingthroughdisorderedscatteringmedia.Lihonget.al.,Sci.Rep.4,3918(2014)UltrasonicallyencodedwavefrontshapingforfocusingintorandomMediaCollectinglightoutsidetheconventionalfieldofviewChoiYetal,PRL,2011,107(2):023902.Harnessinglightfieldforbrainhttp:///qoe/Index.aspImagerestorationthroughthinturbidlayersbycorrelationwithaknownobjectThepropagationoflightinturbidmedialeadstoscatteringanddisturbanceofthelightwavefront.Howeverthescatteringlightstillcarriesthespatial,temporal,spectralorpolarizationinformationoftheincidentsignal,andturnsitintoaspecklefield.ObjectImageonCCDHarnessinglightfieldforbrainhttp:///qoe/Index.aspFirstlyaphasemask,whichcanrecovertheimageoftheknownobject,isgeneratedbywavefrontshapingtechnique.ThistechniquerequiresaglobaloptimizationwithaGeneticAlgorithm(GA).GAwouldoptimizethewavefronttoachieveasupposedscatteringlightfiled.31AknownobjectImageonCCDPhaseMaskonSLMfeedbackcontrolImagerestoration:“l(fā)ookingthroughopaquematerial”Harnessinglightfieldforbrainhttp:///qoe/Index.aspImagerestoration32AnyunknownobjectImageonCCDSecondly,Withthehelpoftheopticalmemoryeffect,anyotherunknownobjectonthesamepositioncanbeimagedthroughthescatteringsystemusingtheoptimizedphasemask.PhaseMaskonSLMholdonHarnessinglightfieldforbrainhttp:///qoe/Index.aspFOVenlargementbyrotatingtheincidentlightTheopticalmemoryeffectfoundbyFengetalindicatedthattwoincidentlightwaveswithacertaincorrelationwillmaintainsomeofthecorrelationafterpassingthroughscatteringmedia.
AsmallFOVunderdirectlyilluminationP1:ObjectPlaneHarnessinglightfieldforbrainhttp:///qoe/Index.aspFOVenlargementbyrotatingtheincidentlightFOVenlargement:3mrad6.6mradOpticsExpress,Vol.21,Issue10,pp.12539-12545(2013).RotatingtheincidentlightwhilekeepingthesameilluminationregioncouldresultinstrongercorrelationandawiderFOV.Inthissituation,thecorrelationfunctionC(qL)hastheformofcombineHarnessinglightfieldforbrainhttp:///qoe/Index.aspSingle-beamconcentrationsystemwithwavefrontshapingtechniqueAphotodiodewithapinholeof50
umservesasthefeedbackforgeneticalgorithmtofindtheoptimalphasepattern,whichgeneratesaconcentratedlightspotbehindtheduramatermembranewitha110timesintensityenhancement.Lightfieldconcentrationthroughascatteringbiologicaltissuewithwavefrontshapingtechnique.ExperimentalsetupResult100timesenhancementthansurroundingareaHarnessinglightfieldforbrainhttp:///qoe/Index.aspMulti-beamconcentrationsystemforfurtherlightconcentrationAmulti-beamlightconcentrationphototherapysystemisrequiredforfurtherlightconcentrationinstrongerscatteringsystem.Theschemeissimilartoagammaknifewhichcanconcentratedozensofgammaraystoatargetareaachievingsingle,high-doseexternalirradiationtothelesions.
Multi-beamconcentrationsystemwithNbeamswouldgetatheoreticalenergygainofN2.1+1>2(a)Experimentalsetupfordual-beamlightconcentrationthroughduramater.(b)showstheoptimizedlightspotsobtainedwithindividualbeam1or2andwithsimultaneoustwo-beamillumination.(c)showsthecontrolledvariationoftheintensitybyvaryingthephasedifferencebetweenthetwobeamsfrom0to2π.(a)(b)(c)Harnessinglightfieldforbrainhttp:///qoe/Index.aspApplicationprospectWecancontrolthelightdistributionunderbiologicaltissue.Deeper:
PenetratethetherapylightdeepintobiologicaltissueMorepreciese:Precisetherapyforcancerunderdeeptissueonacell-sizescale.Purephysicaltherapymethod:minimalinvasiveness,lowersystemictoxicity,lesscollateraldamageNon-spreadingwaves:Airy&Cosine-GausswavesAnylocalizedwave-packettendstoexpandinspaceorintimeduetothediffractionordispersion,whichisauniversalphysicalprocess.However,thereareservalknowcasesofwave-packetswhichpreservetheirshapewhilepropagating,eitherintimeorinspace,forexampletheBesselwavesortheAirywaves.Theyexhibitnon-spreadingandself-healingproperties.ForAirywave,itisalsoself-acceleratingduringpropagation.wavenature:broadeningHelmholtzwaveequation(BesselandAirywaves)Surfacewaterwaveequation
(1)(2)schematicillustrationofwaterwaves39Non-spreadingwaves:Airy&Cosine-GausswavesTherefore,wecanfindthesolutionofsurfaceAirywavesbasedonEq.(2),andthenrealizeitinexperiment.(3)experimenttheorya0=5mmexperimentsimulationa0=23mmNon-spreadingwaves:Airy&Cosine-GausswavesWhileanopticalmeasurementyieldsonly|A|2,whenmeasuringawaterwavefront,Aisdirectlymeasured,allowingtoeasilymeasurethecarrier-envelopephase.Focusingonredandgreenpoints,wehavecarrier(4)Non-spreadingwaves:Airy&Cosine-GausswavesCosine-Gausswaves:anon-spreadingsurfacewaves,asalinearsolutionofEq.(2),obtainedbyinterferingtwoplanewaveswithfinitesizet0:(5):non-spreadingregionNon-spreadingwaves:Airy&Cosine-GausswavesFigures(a,b,c)arethemeasuredenvelopeevolutions;while(d,e,f)arethefullwavemeasurementsattwolocations.101010101010111111Gaussianpulses(a)(b)(c)(d)(e)(f)theoryexperiment中山大學(xué)國家光電材料與技術(shù)重點實驗室2015.3.18匯報人:周建英
教授基于高性能裸眼3D顯示的人機(jī)交互及其關(guān)鍵技術(shù)研究背景SYSUGaNPOWER產(chǎn)業(yè)和市場背景在美國,人機(jī)建模研究在信息技術(shù)中被列為與軟件和計算機(jī)并列的六項國家關(guān)鍵技術(shù)之一,并被認(rèn)為“對于計算機(jī)工業(yè)有著突出的重要性,對其它工業(yè)也是很重要的”。國家科技部“十二五”規(guī)劃表明,3D顯示是最有生命力且終將成為顯示技術(shù)共性平臺的下一代顯示技術(shù);2015年3D顯示產(chǎn)值將達(dá)3700億/年。我省不僅集中了LG、TCL、奇美等龍頭企業(yè),還活躍著一批具有特色技術(shù)的中小企業(yè),覆蓋了從元器件生產(chǎn)、整機(jī)裝配至應(yīng)用開發(fā)等產(chǎn)業(yè)鏈中的環(huán)節(jié)。3D電視3D手機(jī)3D游戲機(jī)3D廣告機(jī)背景SYSUGaNPOWER基于3D視覺的內(nèi)窺成像、精確操縱等新技術(shù)的發(fā)展,使3D從一個純粹的視覺體驗上升為一種剛性需求,同時也對人機(jī)交互提出更高要求裸眼3D顯示的人機(jī)交互需求醫(yī)學(xué):醫(yī)生在3D顯示下辨別腦血管位置的準(zhǔn)確度達(dá)到91.7%,2D顯示下為56.7%腹腔鏡外科手術(shù),3D顯示相對于2D顯示可助手術(shù)失誤率降低62%,縮短35%的手術(shù)時間。航空:遠(yuǎn)程無人機(jī)控制太空裝置對接微納科學(xué):微納機(jī)器人組裝微觀世界觀測中山二院3D手術(shù)納米細(xì)胞修復(fù)器背景SYSUGaNPOWER人機(jī)交互技術(shù)進(jìn)展2009年5月7日,手套式控制產(chǎn)品PeregrineGestureGlove發(fā)布2013年11月25日,蘋果正式收購3D傳感器公司PrimeSense2014年3月26日,F(xiàn)acebook斥資20億美元收購頭盔式虛擬現(xiàn)實制造商Oculus2014年7月15日,微軟體感設(shè)備Kinect2.0正式發(fā)售2014年9月17日,蘋果發(fā)布ios8操作系統(tǒng),具有3D化人機(jī)交互界面2014年10月17日,首款配置英特爾體感設(shè)備RealSense的筆記本開始出售2015年1月22日,微軟發(fā)布增強(qiáng)現(xiàn)實設(shè)備HoloLens2015年國際消費電子展(CES)“NextBigThing”大會的主題:CES上的虛擬現(xiàn)實產(chǎn)品HoloLens
Kinect2.0CES上的虛擬現(xiàn)實產(chǎn)品HoloLensKinect2.0“虛擬與增強(qiáng)現(xiàn)實的未來”背景未來是誰的?繼2014年的Oculus,2015CES大會上,Nbiru、Razer、3DHEAD、NextGalaxy、Fraunhofer等新型虛擬現(xiàn)實產(chǎn)品引起業(yè)界關(guān)注。OR
新型頭盔式顯示可以帶來精彩的視覺體驗,但其作為一種個人化的設(shè)備,無法滿足一些多人觀看的場合使用,特別是公共場合。頭盔裸眼裸眼3D顯示非接觸,方便觀看,而且更為舒適(不會給頭部帶來負(fù)擔(dān),且可避免虛擬現(xiàn)實綜合癥),有其技術(shù)優(yōu)勢。中山大學(xué)新型3D人機(jī)交互系統(tǒng)人機(jī)交互高性能裸眼3D顯示:新型指向型背光技術(shù)左右眼圖像的時空復(fù)用同步動態(tài)背光控制視覺條紋均勻性優(yōu)化高速度多用戶跟蹤:人臉/人眼檢測多用戶跟蹤深度信息處理高效率體感控制:虛擬觸控鍵盤輸入方式拓展3D建模與控制SYSUGaNPOWER裸眼3D顯示技術(shù)觀:高性能裸眼3D顯示新型指向型背光技術(shù)通過自適應(yīng)算法確定最優(yōu)化系統(tǒng)參數(shù),平衡光學(xué)系統(tǒng)的各個參量,包括分辨率、串?dāng)_率、圖像亮度及均勻度、視區(qū)等。再據(jù)此設(shè)計各光學(xué)元件的微觀結(jié)構(gòu),結(jié)合Roll-To-Roll式印刷壓印工藝,制作超高精度微結(jié)構(gòu)光學(xué)聚光膜層,研發(fā)自由曲面弧形背光光源模組。裸眼3D顯示系統(tǒng)基本結(jié)構(gòu)裸眼3D顯示系統(tǒng)光路設(shè)計膜層微結(jié)構(gòu)自適應(yīng)設(shè)計SYSUGaNPOWER核心技術(shù)同步動態(tài)背光控制基于FPGA-單片機(jī)的復(fù)合電子控制架構(gòu),探究最優(yōu)化動態(tài)同步背光控制時序,使左右圖像實現(xiàn)時空分離,降低串?dāng)_率。視覺條紋均勻性優(yōu)化針對摩爾條紋等視覺條紋均勻性問題,引入CSF函數(shù)及蒙特卡洛光線追跡,進(jìn)行量化分析并優(yōu)化。觀:高性能裸眼3D顯示摩爾條紋的CSF函數(shù)描述視覺條紋均勻性研究動態(tài)背光時序刷新SYSUGaNPOWER6核心技術(shù)智能決策界面實拍圖人眼跟蹤模塊主要指標(biāo)隨:高速度多用戶跟蹤人臉/人眼檢測基于Haar-Adaboost-Cascade算法與ROI方法,對攝像頭捕獲的圖片進(jìn)行精確、快速檢測主要技術(shù)困難在于復(fù)雜背景下的檢測,擬通過圖像預(yù)處理方法,調(diào)整圖像對比度,突出人臉特征,提高準(zhǔn)確率項目
PC客戶端ARM客戶端頻率/幀154識別率80%以上50%測試距離/mm60-15080-100SYSUGaNPOWER核心技術(shù)隨:高速度多用戶跟蹤多用戶跟蹤在完成單用戶的檢測和跟蹤研發(fā)的基礎(chǔ)上,逐步擴(kuò)展到多人使用,排除相互之間的干擾深度信息處理采用小型化深度檢測設(shè)備實時檢測用戶的三維信息,對系統(tǒng)作出迅速、準(zhǔn)確的信息反饋人眼跟蹤測試深度信息處理SYSUGaNPOWER核心技術(shù)控:高效率體感控制虛擬觸控鍵盤通過圖像檢測的方法,調(diào)用OpenCV等開源函數(shù)庫,設(shè)計出虛擬觸控技術(shù),對虛擬鍵盤實現(xiàn)點擊輸入,并進(jìn)行相關(guān)用戶體驗設(shè)計輸入方式拓展開發(fā)手勢庫,滿足未來裸眼3D虛擬操控的多方面使用,并拓展出毛筆輸入等多種輸入選擇。虛擬鍵盤體感毛筆輸入拓展開發(fā)研究SYSUGaNPOWER核心技術(shù)控:高效率體感控制3D建模與控制擬利用Kinect等體感設(shè)備進(jìn)行掃描,或由其他途徑得到點云數(shù)據(jù),如從醫(yī)學(xué)CT圖像轉(zhuǎn)化出點云數(shù)據(jù)通過PCL、OpenGL等工具對點云進(jìn)行重建,得到3D模型,再加入到裸眼3D人機(jī)交互系統(tǒng)中進(jìn)行顯示與控制醫(yī)學(xué)點云數(shù)據(jù)重建3D模型的顯示與控制核心技術(shù)創(chuàng)新點實現(xiàn)寬視角、大縱深、全(超)高清,低串?dāng)_的裸眼3D觀看效果結(jié)合裸眼3D顯示,人眼跟蹤與體感控制技術(shù),為3D顯示提供強(qiáng)大操作功能,為體感控制提供優(yōu)質(zhì)顯示平臺注重兼容性開發(fā),裸眼3D顯示兼容多種3D片源,體感控制兼容多種顯示平臺,交互系統(tǒng)兼容多種操作模式3D視角、縱深拓展研究串?dāng)_率測試數(shù)據(jù)分析基礎(chǔ)與進(jìn)展團(tuán)隊研發(fā)歷程基礎(chǔ)與進(jìn)展6團(tuán)隊研發(fā)歷程基礎(chǔ)與進(jìn)展全高清:1080P廣視角:30°低串?dāng)_:約3.5%裸眼3D人機(jī)交互系統(tǒng)與廣東省地方標(biāo)準(zhǔn)產(chǎn)業(yè)與技術(shù)發(fā)展對裸眼3D顯示產(chǎn)品提出了真實需求,但傳統(tǒng)裸眼3D技術(shù)又難以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 描寫秋景的初一作文600字5篇
- 初中物理教學(xué)心得體會
- 大學(xué)畢業(yè)求職信合集五篇
- 對創(chuàng)業(yè)的認(rèn)識和理解范文五篇
- 七年級下冊歷史知識要點歸納總結(jié)
- 光電技術(shù)轉(zhuǎn)讓協(xié)議書(2篇)
- 租賃經(jīng)營合同范本
- 旅游汽車租賃合同樣書
- 2025電腦購銷合同合同范本
- 2025煤炭買賣合同
- 道路運輸企業(yè)安全生產(chǎn)管理人員安全考核試題題庫與答案
- 護(hù)理質(zhì)控輸液查對制度
- 年終抖音運營述職報告
- 期末教師會議德育副校長講話:德育需要奉獻(xiàn)
- 腦梗死患者的護(hù)理常規(guī)
- 2024年7月國家開放大學(xué)法律事務(wù)??啤斗勺稍兣c調(diào)解》期末紙質(zhì)考試試題及答案
- 大學(xué)生科學(xué)運動與控制體重(黑龍江幼兒師范高等專科學(xué)校)知到智慧樹答案
- 2023年4月1日江蘇省事業(yè)單位統(tǒng)考《綜合知識和能力素質(zhì)》(管理崗客觀題)原卷+答案
- 2024年人教版初二地理上冊期末考試卷(附答案)
- 兒童文學(xué)解讀導(dǎo)論智慧樹知到期末考試答案章節(jié)答案2024年嘉興大學(xué)
- AQ6111-2023個體防護(hù)裝備安全管理規(guī)范
評論
0/150
提交評論