大三上課件-統(tǒng)計(jì)error diagnostic test_第1頁
大三上課件-統(tǒng)計(jì)error diagnostic test_第2頁
大三上課件-統(tǒng)計(jì)error diagnostic test_第3頁
大三上課件-統(tǒng)計(jì)error diagnostic test_第4頁
大三上課件-統(tǒng)計(jì)error diagnostic test_第5頁
已閱讀5頁,還剩80頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Chp14

ClinicalMeasurementErrorandDiagnosisTest

臨床測量誤差與診斷試驗(yàn)

Dr.MinShenSchoolofPublicHealth

TongjiMedicalCollegeMedicalmeasurementpatientssexageweightheightbloodpressurebloodsugar1…………23Hypertension?Diabetes?hemomanometerchecker

glucosemonitorsMeasurementErrorAparticipant’sscoreonaparticularmeasureconsistsof2components:Observedscore=Truescore+MeasurementErrorTrueScore=scorethattheparticipantwouldhaveobtainedifmeasurementwasperfect—i.e.,wewereabletomeasurewithouterror(i.e.Height175cm)MeasurementError=thecomponentoftheobservedscorethatistheresultoffactorsthatdistortthescorefromitstruevalue(0.5cm)1.Sourcesofmeasurementerror2.Assessmentofmeasurementerror3.EvaluationofconsistencyClinicalMeasurementErrorSymptomsandsignsBiologicalvariationMeasurementdataSystematicerrorRandomerrorMedicaldiagnosisSystematicerrorRandomerrorMeasuremente=thetruevalue+systematicerror+biologicalvariation+randomerror+othererrorMeasurementerror1.SourcesofMeasurementError0101

SystematicerrorSystematicerrorsareerrorsthatproducearesultthatdiffersfromthetruevaluebyafixedamount

(thesamedirection).Theseerrorsresultfrombiasesintroducedbyinstrumentalmethod,orhumanfactorsSources:Instrumental,physicalandhumanlimitations.Example:Deviceisout-ofcalibration,type,manufactory,lotnumberHowtominimizeit?Carefulcalibration.BestpossibletechniquesAreTYPICALLYpresent?systematicerrorIfyouaskthepersonwhosellsfishatyourfavoritemarkettoweightapieceoffishseveraltimesforyou,andheputshisthumbonthescaleinawaythatmakesthefishseem2ouncesheavierthanitis,that’sbias--asystematictendencytooverorunderestimatethetruevalue.Noticethatsystematicerrordoesn’tmovearound

fromobservationtoobservation--that’swhatmakesitsystematic.

Randomerroristheirreproducibilityinmakingreplicatemeasurementsandaffectstheprecisionofaresult.

Source:

NaturebiologicalvariabilityMeasurementerrors

Howtominimizeit?

Takemoredata.

Randomerrors

canbeevaluatedthroughstatisticalanalysisandcanbereducedbyaveragingoveralargenumberofobservations.

RandomErrorHowtominimizeexperimentalerror:someexamplesTypeofErrorExampleHowtominimizeitRandomerrorsYoumeasurethemassofaringthreetimesusingthesamebalanceandgetslightlydifferentvalues:17.46g,17.42g,17.44gTakemoredata.Randomerrorscanbeevaluatedthroughstatisticalanalysisandcanbereducedbyaveragingoveralargenumberofobservations.SystematicerrorsTheclothtapemeasurethatyouusetomeasurethelengthofanobjecthadbeenstretchedoutfromyearsofuse.(Asaresult,allofyourlengthmeasurementsweretoosmall.)Theelectronicscaleyouusereads0.05gtoohighforallyourmassmeasurements(becauseitisimproperlytaredthroughoutyourexperiment).Systematicerrorsaredifficulttodetectandcannotbeanalyzedstatistically,becauseallofthedataisoffinthesamedirection(eithertohighortoolow).Spottingandcorrectingforsystematicerrortakesalotofcare.Howwouldyoucompensatefortheincorrectresultsofusingthestretchedouttapemeasure?(你將如何補(bǔ)償拉伸卷尺使用不正確的結(jié)果)Howwouldyoucorrectthemeasurementsfromimproperlytaredscale?(你如何??糾正不正確的測量值?)Accuracy:Incertainmeasurementconditions,thedegreeofagreementbetweentheaveragelevelsofmeasurementresultsandthetruevalue.systematicerroraccuracyHowclosemeanofmeasuredvaluesistotruevaluePrecision:

Incertainmeasurementconditions,thedegreeofdispersionbetweentheobservedvalues??.randomerrorprecision

RepeatabilityofmeasurementsAccuracyvs.PrecisionInordertobeprecise,atestmustbeaccurate;butprecisiondoesnotguaranteeaccuracy.PrecisenotaccurateAccuratenotpreciseNeitherprecisenoraccurateBothpreciseandaccurate

Scientistsalwayswantthemostpreciseandaccurate

experimentaldata.

Theprecisionandaccuracyarelimitedbytheinstrumentationanddatagatheringtechniques.

Outlier:Statisticaldatawhichisextremelydifferentfromtheothersinthesamesample.Instatistics,anoutlierisanobservationthatisnumericallydistantfromtherestofthedataOutlierscanoccurbychanceinanydistribution,buttheyareoftenindicativeeitherofmeasurementerrororthatthepopulationhasaheavy-taileddistribution.Statisticalanalysis:discardthemorusestatisticsthatarerobusttooutliersFigure1.BoxplotofdatafromtheMichelson-MorleyExperimentdisplayingoutliersinthemiddlecolumnBias:Asystematicerrorindataduetothecharacteristicsoftheprocessemployedinthecreation,collection,manipulation,andpresentationofdata,orduetofaultysampledesignoftheestimatingtechnique.MeasurementError=(observedvalue–truevalue)=systematicerror+randomerror

biasSelectionandinformationbiasesSourcesofSelectionBiasInappropriatepopulationstudiedInadequateparticipationChangeofclassificationofthedeterminantSelectionofmost‘a(chǎn)ccessible’orofvolunteersInadequateParticipationWewanttostudytheassociationofstigmawithdiagnosisofTBWeselectasampleofthepopulation20%ofthesampleagreetoparticipateWefindthatthereisnoassociationofstigmawithTBIsthistrue?InappropriatePopulationWewishtomeasuretheimpactofHIVontuberculosisWestudythetrendoftuberculosisinWuhanfrom1997to2001WefindnochangeinnotificationrateWeconcludethatHIVhasnoimpactonTBWereweright?ClassificationofDeterminantWewanttostudytheimpactofpovertyonthetrendoftuberculosisinWuhanWeselectapoordistrictandarichdistrictandcomparethenotificationofTBfrom1991to2000Inthemeantime,thereisan‘urbanrenewal’projectinthepoordistrictWefindnodifferencebetweenthedistrictsCanweconcludethatpovertyisnotrelatedtoTB?ParticipationofVolunteersWewanttodeterminetheprevalenceofHIVinfectioninWuhanWeaskforvolunteersfortestingWefindnoHIVIsitcorrecttoconcludethatthereisnoHIVinWuhan?variancecomponentanalysis(方差分量法)

signal-to-noiseratio(SNR)

2.Assessmentofmeasurementerror1)Variancecomponentanalysis:

Thebasicideaforvariancecomponentanalysisistoseparatethetotalvariationintovariancesfromdifferentsources,likeindividualvariabilityandmeasurementrepeatedvariabilityandtocomparetheratioofeachvariancecomponenttothetotalvariation.Iftheratioofthevariancecomponentofrepeatedmeasurementerrortothetotalvariationissmall,itindicatesthatitisameasurementofhighreliability.隨機(jī)誤差的度量同樣條件下多次重復(fù)測量,用全部觀察值結(jié)果的標(biāo)準(zhǔn)差作為測量誤差的度量:variancecomponentofindividualvariability.

個(gè)體之間的變異或誤差的方差分量:variancecomponentofrepeatedvariability.受試者內(nèi)多次測量結(jié)果的變異/誤差estimatemeasurementerroranalysisvarianceoftwomeasurementerrorExpectationofMSExample:例14-1血清載脂蛋白B在粥樣動(dòng)脈硬化、冠心病等疾病研究中具有重要意義。為了解其測量誤差,選擇8名受試者的一份血樣分成3份,分別進(jìn)行三次測量,試對(duì)其進(jìn)行評(píng)價(jià)。Table14-1threemeasurementsofSerumapolipoproteinB(mg/dl)NofirstsecondthirdTotal(B)Sumofsquare11201099932836028212612311836744929312112414138649898410013414037447556596979729028034610710510832034138711713511536745139813414012039451956total2826337678Example:8×3σ2w=S2w=MSe

The95%maximumerrorrangeofrepeatedmeasurementforeachsubject每一受試者重復(fù)測量的95%的最大誤差范圍:ICC(intraclasscorrelationcoefficient)組內(nèi)相關(guān)系數(shù)ICCisreliabilityindex.(1>ICC>0)(信度)ICC1:repeatability(測量誤差?。?/p>

K=3:timesofrepeatmeasurement=0.48onetime=0.735

Errorassessment---SNR(signalnoiseratio)TheSNRisusedtomeasuretheerrorundertheknowntruecondition.Thebasicideaistocorrectmeasurementerrorsbyalinearregressionmodeledbystandardsampleandactualmeasurement.

信噪比:通常是根據(jù)標(biāo)準(zhǔn)樣品對(duì)實(shí)際測量結(jié)果的誤差進(jìn)行校正,然后求出評(píng)價(jià)統(tǒng)計(jì)量SNR

Example例14-2試驗(yàn)?zāi)撤N新型抗血小板聚集藥物,選三家醫(yī)院作為試驗(yàn)中心,為考核各醫(yī)院血小板凝集試驗(yàn)測定方法的準(zhǔn)確性和穩(wěn)定性,取出9個(gè)標(biāo)準(zhǔn)血清試樣,分別測得如下數(shù)據(jù)(表14-4),試對(duì)測試結(jié)果進(jìn)行評(píng)價(jià)。Example:Table14-4theresultsofexperimentaltestsofplateletaggregationofthreehospitals.

Regressionequation:以各醫(yī)院的測量值為應(yīng)變量Yi(i=1,2,3),以標(biāo)準(zhǔn)含量為自變量X作直線回歸分析SNRr為有效重復(fù)數(shù)

r:EffectivenumberofrepeatSNRSNRResultsof

comprehensiveanalysisofthreehospitals:SNR3.Evaluationofconsistency觀察結(jié)果的一致性評(píng)價(jià)consistency:Agreementorlogicalcoherenceamongthingsorparts.是指對(duì)同一個(gè)體用兩種儀器或從兩種角度進(jìn)行觀測,觀測值之間接近程度或測量效果相似性的一個(gè)指標(biāo).Kappakappacoefficient

評(píng)價(jià)分類變量結(jié)果一致性和信度的重要指標(biāo)|κ|≤1KappaandKendallThekappastatisticisameasureofabsoluteagreementamongappraisers'ratings.Usekappawhenyourdataarenominal(category)withtwoormorelevelswithnonaturalordering.Kendall'sstatisticisameasureoftheassociationamongappraisers'ratings.OnlyuseKendall'sstatisticwhenyourdataarecontinuousorordinalwiththreeormorepossiblelevelswithnaturalordering,suchasstronglydisagree,disagree,neutral,agree,andstronglyagreeKappaistheproportionofagreementafterchanceagreementhasbeenremoved.Ifkappa=1,thereisperfectagreement.(完全一致)Ifkappa=0,theagreementisthesameaswouldbeexpectedbychance.(<0.4)(一致性較差)Thestrongertheagreement,thehigherthevalueofkappa.(>0.8)(極好的一致性)Negativevaluesoccurwhenagreementisweakerthanexpectedbychance,butthisrarelyhappens.(觀察一致性小于機(jī)遇一致性,無意義)PA:observedagreementPe:agreementofchancePA–Pe:actualagreementbeyondchance

1–Pe

:potentialagreementbeyondchance

Kapparange:[-1,+1]

IfKappa=+1therearecompleteagreementbetweentwocriteria.

IfKappa=–1twocriteriaaretotallydifferent.

IfKappa=0theagreementiscausedbychance.

IfKappa>0.8theagreementisverysatisfy.IfKappabetween0.6-0.8higheragreement

IfKappabetween0.4-0.6moderateagreement.

IfKappa<=0.4

theagreementisnotsosatisfy.Theconsistencytestfordichotomous:bExample:Supposethatyouwereanalyzingdatarelatedtopeopleapplyingforagrant.Eachgrantproposalwasreadbytwopeopleandeachreadereithersaid"Yes"or"No"totheproposal.Supposethedatawereasfollows,whererowsarereaderAandcolumnsarereaderB:Notethattherewere20proposalsthatweregrantedbybothreaderAandreaderB,and15proposalsthatwererejectedbybothreaders.Thus,theobservedpercentageagreementisPr(a)=(20+15)/50=0.70BYesNoAYes205No1015

TocalculatePr(e)(theprobabilityofrandomagreement)wenotethat:AsaidYesto25applicantsandNoto25applicants,theAsaidYesis50%ofthetimeBsaidyesto30applicantsandNoto15applicants,BsaidYesis60%ofthetimeThereforetheprobabilitythatbothofthemwouldsay"Yes"randomlyis0.5*0.6=0.3andtheprobabilitythatbothofthemwouldsay"No"is0.5*0.4=0.2,ThustheoverallprobabilityofrandomagreementisPr(e)=0.3+0.2=0.5SonowapplyingourformulaforCohen'sKappaweget:BBYesNoAYes205ANo1015consistencytestofmulti-classificationmeasurementresults:consistencytestofmulti-classificationmeasurementresults:ObservedagreementAgreementofchanceUsingCiwujiainjectiontreat418patientsofcoronaryheartdiseasewithangina,DoctorAanddoctorBevaluatetheeffectofthetreatment.Howistheagreementofevaluationofthetwodoctors?DoctorADoctorBtotalmarkedeffecteffectnoeffectmarkedeffect10540109effect2422020264noeffect063945total12923059418DiagnosisTest:Adiagnostictestisanykindofmedicaltestperformedtoaidinthediagnosisordetectionofdisease.Forexample:※todiagnosediseases,andpreferablysub-classifyitregarding,forexample,severityandtreatability.※toconfirmthatapersonisfreefromdisease.

StatisticalassessmentofDiagnosisTestDiagnostictestshelpphysiciansrevisediseaseprobabilityfortheirpatients.Alltestsshouldbeorderedbythephysiciantoansweraspecificquestion.The5mainreasonsforadiagnostictestareasfollows:◎Establishadiagnosisinsymptomaticpatients.Forexample,anECGtodiagnoseST-elevationmyocardialinfarction(STEMI)inpatientswithchestpain.◎Screenfordiseaseinasymptomaticpatients.Forexample,aprostate-specificantigen(PSA)testinmenolderthan50years.◎Provideprognosticinformationinpatientswithestablisheddisease.Forexample,aCD4countinpatientswithHIV.◎Monitortherapybyeitherbenefitsorsideeffects.Forexample,measuringtheinternationalnormalizedratio(INR國際標(biāo)準(zhǔn)化比值)inpatientstakingwarfarin(華發(fā)林).INR的值越高,血液凝固所需的時(shí)間越長。這樣可以防止血栓形成,例如血栓導(dǎo)致的中風(fēng)。健康成年人,INR值大約1.0。有靜脈血栓的患者的INR值一般應(yīng)保持在2.0~2.5之間;有心房纖維性顫動(dòng)的患者的INR值一般應(yīng)保持在2.0~3.0之間。◎Atestmaybeperformedtoconfirmthatapersonisfreefromadisease.Forexample,apregnancytesttoexcludethediagnosisof.Thecriterion(reference)standardtestdefinitivelydecideseitherpresenceorabsenceofadisease.Examplesofcriterionstandardtestsincludepathologicalspecimensformalignanciesandpulmonaryangiographyforpulmonaryembolism.However,criterionstandardtestsroutinelycomewithdrawbacks:theyareusuallyexpensive,lesswidelyavailable,moreinvasive,andriskier.Theseissuesusuallycompelmostphysicianstochooseotherdiagnostictestsassurrogatesfortheircriterionstandardtest.Goldstandardmethodofdiagnosiswhichisthemostreliable,mostaccurateandthebestincurrentclinicaldiagnosisofdisease.(Biopsy,Autopsy,Surgicalexploration)

ThetargetpopulationpatientNon-patient++--GoldstandardDiagnosisTestNumberofpeopleNon-patientD-PatientD+αβThresholdfalsepositivefalsenegativeTruepositive:

Sickpeoplecorrectlydiagnosedassick.Falsepositive:Healthypeopleincorrectlyidentifiedassick.Truenegative:

Healthypeoplecorrectlyidentifiedashealthy.Falsenegative:Sickpeopleincorrectlyidentifiedashealthy.

DiagnostictestresultsGoldstandardDiagnosistesttotalT+D-D+D-totalaba+b(n1)cdc+d(n2)a+cb+da+b+c+d(n)Se=an1Sp=n2dPV+=aa+cdPV-=b+dSensitivity(Se)measurestheproportionofactualpositiveswhicharecorrectlyidentifiedassuch.(e.g.thepercentageofsickpeoplewhoarecorrectlyidentifiedashavingthecondition)1-Se=β:1-Sedenotesthefalsenegativerate.measurestheproportionofnegativeswhicharecorrectlyidentified.(e.g.thepercentageofhealthypeoplewhoarecorrectlyidentifiedasnothavingthecondition)1-Sp=α:1-Spdenotesthefalsepositiverate.Specificity(Sp)ThesetwomeasuresarecloselyrelatedtotheconceptsoftypeIandtypeIIerrors.Atheoretical,optimalpredictionaimstoachieve100%sensitivity(i.e.predictallpeoplefromthesickgroupassick)and100%specificity(i.e.notpredictanyonefromthehealthygroupassick),howevertheoreticallyanypredictorwillpossessaminimumerrorboundknownastheBayeserrorrate.

Youden’sindex(J)Youden’sindexisonewaytoattemptsummarizingtestaccuracyintoasinglenumericvalue.J=Se+Sp-1(-1≤J≤1)

J1J≤0Positivepredictivevalue(PV+)Positivepredictivevalueistheproportionofpatientswithpositivetestresultswhoarecorrectlydiagnosed.negativepredictivevalue(PV-)Positivepredictivevalueistheproportionofpatientswithpositivetestresultswhoarecorrectlydiagnosed.Thepredictivevalueareassociatedwithnotonlysensitivityandspecificity,butalsotheprevalenceoftargetpopulation.predictivevaluePV+=P(D+∣T+)=SePSeP+(1-Sp)(1-P)PV-=P(D-∣T-)=Sp(1-P)Sp(1-P)+(1-Se)PThevalueofadiagnosticmethodmainlybasedonthePV+andPV-.predictivevalue1.0PVPPV-PV+Se-,Sp-;P↑→→PV+↑,PV-↓0.80.20.40.60PV+=aa+cPV-=b+dd診斷人群患病比率Figure:診斷人群患病比率與診斷結(jié)果預(yù)測值的關(guān)系Example:Electricpulptesttodetectthenecrosisofpulptissue,howaboutthesensitivity,specificity,Youdenindex,PV+andPV-?Pathologicalexamination(goldstandard)ElectricpulptestTotalT+T-D+451055D-16180196Total61190251DiagnosisindexResultsestimateStandarddeviation95%CISensitivity0.81820.05200.71630.9201Specificity0.91840.01960.88010.9567YoudenIndex0.73660.05560.62770.8455PV+0.7377PV-0.9474Sensitivityandspecificityarethebasicmeasuresofaccuracyofadiagnostictest;however,theydependonthecutpointusedtodefine“positive”and“negative”testresults.Asthecutpointshifts,sensitivityandspecificityshift.ROCCurve(receiveroperatingcharacteristiccurve)

ROCCurveRecei

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論