版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年遼寧省沈陽市雨田中學(xué)高三數(shù)學(xué)理期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.長方體ABCD—ABCD中,,則點到直線AC的距離是A.3
B.
C.
D.4參考答案:A略2.等差數(shù)列中,,則(A)
(B)
(C)
(D)參考答案:B略3.在驗證吸煙與否與患肺炎與否有關(guān)的統(tǒng)計中,根據(jù)計算結(jié)果,認(rèn)為這兩件事情無關(guān)的可能性不足1%,那么的一個可能取值為()A.6.635
B.5.024
C.7.897
D.3.841P(k2>k)0.500.4000.050.0250.0100.0050.001K0.4550.7081.3232.0722.7063.845.0246.6357.87910.83參考答案:C略4.要得到函數(shù)的圖像,只需將函數(shù)的圖像
(
)A.向左平移個單位
B.向右平移個單位C.向左平移個單位
D.向右平移個單位參考答案:A略5.函數(shù)f(x)=sin(2x+φ)(|φ<|)的圖象向左平移個單位后關(guān)于原點對稱,求函數(shù)f(x)在[0,]上的最小值為()A.﹣ B.﹣ C. D.參考答案:A【考點】函數(shù)y=Asin(ωx+φ)的圖象變換;三角函數(shù)的最值.【分析】由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性可得+φ=kπ,k∈z,由此根據(jù)|φ|<求得φ的值.【解答】解:函數(shù)f(x)=sin(2x+φ)(|φ|<)的圖象向左平移個單位后,得到函數(shù)y=sin[2(x+)+φ]=sin(2x++φ)的圖象,再根據(jù)所得圖象關(guān)于原點對稱,可得+φ=kπ,k∈z,∴φ=﹣,f(x)=sin(2x﹣),由題意x∈[0,],得2x﹣∈[﹣,],∴sin(2x﹣)∈[,1]∴函數(shù)y=sin(2x﹣)在區(qū)間[0,]的最小值為.故選:A.6.已知F1,F(xiàn)2是雙曲線的兩個焦點,過F1作垂直于x軸的直線與雙曲線相交,一個交點為P,則|PF2|=
A.6
B.4
C.2
D.1參考答案:A略7.已知函數(shù)的圖象的一段圓弧(如圖所示),則(
)
A.
B.C.
D.前三個判斷都不正確參考答案:C略8.函數(shù)的單調(diào)遞增區(qū)間是(
)
A.
B.(2,)
C.(1,)
D.
參考答案:D9.給出下列命題(1)實數(shù)的共軛復(fù)數(shù)一定是實數(shù);(2)滿足的復(fù)數(shù)的軌跡是橢圓;(3)若,則其中正確命題的序號是(
)A.
B.
C.
D.參考答案:C10.執(zhí)行上圖所示的程序框圖,則輸出的結(jié)果是(
)A. B.
C.
D.參考答案:C二、填空題:本大題共7小題,每小題4分,共28分11.若一個球的體積是36π,則它的表面積是______參考答案:36π設(shè)鐵球的半徑為,則,解得;則該鐵球的表面積為.考點:球的表面積與體積公式.12.若圓錐底面半徑為1,高為2,則圓錐的側(cè)面積為
▲
.參考答案:略13.已知數(shù)列{an}為等差數(shù)列,a1+a2+a3=3,a5+a6+a7=9,則a4=
.參考答案:2【考點】等差數(shù)列的性質(zhì).【專題】計算題.【分析】若數(shù)列{an}為等差數(shù)列,正整數(shù)m、k、n滿足m+n=2k,則有am+an=2ak,并且稱ak為am、an的等差中項.運用等差中項的方法可以解決本題:根據(jù)a1+a3=2a2,得到a1+a2+a3=3a2=3,從而a2=1;同樣的方法得到a6=3,最后根據(jù)a2+a6=2a4得到a4=2.解:∵數(shù)列{an}為等差數(shù)列,∴a1+a2+a3=3a2=3,a5+a6+a7=3a6=9,∴a2=1,a6=3,∵a2+a6=2a4∴a4=(a2+a6)=2故答案為:2【點評】本題給出一個特殊的等差數(shù)列,在已知連續(xù)3項和的情況下,運用等差中項求未知項,著重考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.14.若平面向量α、β
滿足,且以向量α、β為鄰邊的平行四邊形的面積為,則α和β的夾角
θ的取值范圍是_________________________參考答案:題主要考查了平面向量的相關(guān)性質(zhì)、三角函數(shù)值的求解、三角形的面積公式以及三角函數(shù)的圖象與性質(zhì)等,難度中等。由于S=|α||β|sinθ=|β|sinθ=,那么sinθ=≥,結(jié)合三角函數(shù)的圖象與性質(zhì)以及平面向量的夾角定義知θ∈[,],故填[,];15.已知tanα=﹣2,則sin2α+cos2α=.參考答案:【考點】同角三角函數(shù)基本關(guān)系的運用.【分析】方法1:利用“弦化切”及其平方關(guān)系即可解決.方法2:利用“切化弦”的轉(zhuǎn)化思想,找到sinα與cosα的關(guān)系,利用sin2α+cos2α=1的平方關(guān)系,即可得到答案.【解答】解法1:解:∵sin2α+cos2α=1,tanα=﹣2,∴sin2α+cos2α====解法2:解:∵tanα=﹣2,∴sinα=﹣2cosα?sin2α=4cos2α又∵sin2α+cos2α=1∴4cos2α+cos2α=1解得:cos2α=,sin2α=∴sin2α+cos2α=16.下列命題:①線性回歸方程對應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(x1,yl),(x1,yl),……,(xn,yn)中的一個點;⑧設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時,.則當(dāng)x<0時,;③若圓與坐標(biāo)軸的交點坐標(biāo)分別為(x1,0),(x2,0),(0,yl),(0,y2),則;④若圓錐的底面直徑為2,母線長為,則該圓錐的外接球表面積為4π。其中正確命題的序號為.▲.(把所有正確命題的序號都填上)參考答案:略17.已知非零向量序列:滿足如下條件:||=2,?=﹣,且=(n=2,3,4,…,n∈N*),Sn=,當(dāng)Sn最大時,n=
.參考答案:8或9考點:數(shù)列的求和;平面向量的基本定理及其意義.專題:等差數(shù)列與等比數(shù)列;平面向量及應(yīng)用.分析:由已知條件采用累加法求得=+(n﹣1),求出?的通項公式,利用等差數(shù)列的性質(zhì)進(jìn)行求解即可.解答: 解:∵=,∴向量為首項為,公差為的等差數(shù)列,則=+(n﹣1),則?=?=2+(n﹣1)?=4(n﹣1)=,由?=≥0,解得n≤9,即當(dāng)n=9時,?=0,則當(dāng)n=8或9時,Sn最大,故答案為:8或9.點評:本題考查了數(shù)列遞推式,訓(xùn)練了累加法去數(shù)列的通項公式,是中檔題三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分14分)在橢圓中,過焦點且垂直于長軸的直線被橢圓截得的弦,叫做橢圓的通徑.如圖,已知橢圓的左、右焦點分別為,其離心率為,通徑長為.(1)求橢圓的方程;(2)過的動直線交橢圓于兩點,(?。﹩栐谳S上是否存在定點,使恒為常數(shù)?若存在,求出點的坐標(biāo);若不存在,說明理由.(ⅱ)延長交橢圓于點,分別為、的內(nèi)心,證明四邊形與的面積的比值恒為定值,并求出這個定值.參考答案:(1)由,得:又通徑長為3,由代入橢圓方程得,則,解得橢圓的方程為
…………4分(2)(?。┘僭O(shè)在軸上存在定點,使為常數(shù).①當(dāng)直線的斜率不為0時,設(shè),聯(lián)立方程
得
設(shè),則恒成立,,…………6分所以,因為與無關(guān),則時,②直線的斜率為0時,也成立故在軸上存在定點,使為常數(shù).
…………10分(ⅱ)橢圓的方程為,設(shè)的內(nèi)切圓的半徑為,則,則,同理得,.所以,
四邊形與的面積的比值為.
…………14分19.(本小題滿分14分)在中,角所對的邊分別為,向量,且.(Ⅰ)求的值;(Ⅱ)若的面積為,求.參考答案:(Ⅰ)
,,,…………7分[來源:Z#xx#k.Com](Ⅱ)由,得,又,……………….10,當(dāng)時,;…………12分當(dāng)時,.…………14分
略20.(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點的實數(shù)的取值范圍.參考答案:(1)f(x)的定義域為……………..2分
f(-x)=log2=log2=-f(x),
所以,f(x)為奇函數(shù).
……..6分
(2)由y=,得x=,
所以,f-1(x)=,x0.
……………..9分
因為函數(shù)有零點,所以,應(yīng)在的值域內(nèi).所以,log2k==1+,
….13分
從而,k.
……………..14分21.在中,內(nèi)角A、B、C的對邊長分別為a、b、c.已知,且,求b.參考答案:解析:
由余弦定理得
又
所以
①由正弦定理得
又由已知得
所以
②故由①②解得
22.(本小題滿分12分)已知函數(shù).(Ⅰ)求函數(shù)的最大值;(Ⅱ)若函數(shù)與有相同極值點.①求實數(shù)的值;②若對于(為自然對數(shù)的底數(shù)),不等式恒成立,求實數(shù)的取值范圍.參考答案:(Ⅰ),…………1分
由得;由得.
在上為增函數(shù),在上為減函數(shù).……2分
函數(shù)的最大值為.…………3分(Ⅱ).①由(1)知,是函數(shù)的極值點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度舊環(huán)保設(shè)備買賣與運營維護合同3篇
- 二零二五年度建筑廢棄物綜合利用合同3篇
- 計算思維課程設(shè)計
- 海南醫(yī)學(xué)院《生物醫(yī)學(xué)工程倫理及政策法規(guī)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度抵債資產(chǎn)轉(zhuǎn)讓與受讓合同3篇
- 海南師范大學(xué)《武術(shù)教學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 照明電氣設(shè)計課程設(shè)計
- 2025年度生態(tài)農(nóng)業(yè)園區(qū)綠化種植與生態(tài)保護合同3篇
- 二零二五年度安置房租賃中介服務(wù)合同
- 算法課程設(shè)計2048
- 2025年首都機場集團招聘筆試參考題庫含答案解析
- 期末測試卷-2024-2025學(xué)年語文四年級上冊統(tǒng)編版
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 數(shù)學(xué) 含解析
- 收割機轉(zhuǎn)讓協(xié)議
- 中學(xué)歷史教育中的德育狀況調(diào)查問卷
- 煤礦煤業(yè)掘進(jìn)工作面班組安全確認(rèn)工作記錄表 模板
- 第8期監(jiān)理月報(江蘇版)
- 建筑工程質(zhì)量管理體系文件
- 乙丙橡膠電力電纜絕緣一步法硅烷交聯(lián)工藝
- 中止施工安全監(jiān)督申請書(范例)
- 世界各國標(biāo)準(zhǔn)鋼號對照表
評論
0/150
提交評論