版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年河南省焦作市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.A.
B.
C.
D.
2.
3.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
4.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直
5.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
6.設(shè)函數(shù)為().A.A.0B.1C.2D.不存在
7.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
8.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.
B.
C.
D.
9.
10.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
11.
12.若,則下列命題中正確的有()。A.
B.
C.
D.
13.
A.1B.0C.-1D.-2
14.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx
15.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
16.A.A.2B.-1/2C.1/2eD.(1/2)e1/2
17.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]
B.[-1,1]
C.[1,+∞)
D.(-∞,+∞)
18.函數(shù)y=sinx在區(qū)間[0,n]上滿足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π
19.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定
20.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點
B.存在唯一零點
C.存在極大值點
D.存在極小值點
二、填空題(20題)21.冪級數(shù)
的收斂半徑為________。
22.
23.不定積分=______.
24.
25.
26.
27.
28.曲線y=x3+2x+3的拐點坐標(biāo)是_______。
29.
30.
31.
32.設(shè)函數(shù)x=3x+y2,則dz=___________
33.
34.
35.
36.將積分改變積分順序,則I=______.
37.微分方程dy+xdx=0的通解y=_____.
38.微分方程y'+4y=0的通解為_________。
39.
40.
三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
42.
43.
44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
45.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
46.求微分方程y"-4y'+4y=e-2x的通解.
47.
48.證明:
49.求曲線在點(1,3)處的切線方程.
50.
51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
53.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
54.
55.求微分方程的通解.
56.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
57.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
58.將f(x)=e-2X展開為x的冪級數(shù).
59.
60.
四、解答題(10題)61.
62.
63.
64.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。
65.
66.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.
67.(本題滿分10分)求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)-周所成旋轉(zhuǎn)體的體積.
68.
69.
70.設(shè)F(x)為f(x)的一個原函數(shù),且f(x)=xlnx,求F(x).
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.研究y=3x4-8x3+6x2+5的增減性、極值、極值點、曲線y=f(x)的凹凸區(qū)間與拐點.
參考答案
1.B本題考查的知識點為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時,由導(dǎo)數(shù)定義可得
2.D
3.B本題考查了一階線性齊次方程的知識點。
因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=In2,故f(x)=e2xln2.
注:方程y'=2y求解時也可用變量分離.
4.C本題考查的知識點為兩平面的位置關(guān)系.
由于平面π1,π2的法向量分別為
可知n1⊥n2,從而π1⊥π2.應(yīng)選C.
5.B
6.D本題考查的知識點為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點x=1為f(x)的分段點,且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
7.A本題考查的知識點為不定積分運(yùn)算.
可知應(yīng)選A.
8.C
9.A解析:
10.C
11.D
12.B本題考查的知識點為級數(shù)收斂性的定義。
13.A
本題考查的知識點為導(dǎo)數(shù)公式.
可知應(yīng)選A.
14.Cy=cosx,y'=-sinx,y''=-cosx.
15.B本題考查了函數(shù)的單調(diào)性的知識點,
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
16.B
17.B
18.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可
知y=sinx在[0,π]上滿足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時,cosξ=0,因此選C。
19.C
20.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點定理可知,y=f(x)在(a,b)內(nèi)至少存在一個零點.又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點,則至多存在一個.
綜合上述f(x)在(a,b)內(nèi)存在唯一零點,故選B.
21.所給冪級數(shù)為不缺項情形,可知ρ=1,因此收斂半徑R==1。
22.本題考查的知識點為重要極限公式.
23.
;本題考查的知識點為不定積分的換元積分法.
24.
25.-ln(3-x)+C-ln(3-x)+C解析:
26.
27.
28.(03)
29.
30.本題考查的知識點為定積分的基本公式。
31.
32.
33.x—arctanx+C.
本題考查的知識點為不定積分的運(yùn)算.
34.
35.
36.
37.
38.y=Ce-4x
39.
40.
41.
42.
43.
44.
列表:
說明
45.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
46.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
47.
48.
49.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.由一階線性微分方程通解公式有
51.
52.由二重積分物理意義知
53.
54.
則
55.
56.函數(shù)的定義域為
注意
57.由等價無窮小量的定義可知
58.
59.
60.
61.
62.
63.
64.
65.66.所給平面圖形如圖4-1中陰影部分所示.
由,可解得因此
:本題考查的知識點為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.這是常見的考試題型,考生應(yīng)該熟練掌握.
67.本題考查的知識點有兩個:利用定積分求平面圖形的面積;用定積分求繞坐標(biāo)軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.
所給曲線圍成的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 分宜縣政府采購合同的實際應(yīng)用
- 二手車輛交易協(xié)議格式
- 簡單股權(quán)入股合同
- 藝人經(jīng)紀(jì)公司合同
- 服裝百貨購銷合同
- 容器用鋼板采購合同
- 專業(yè)勞務(wù)派遣服務(wù)合同標(biāo)準(zhǔn)文本
- 服裝采購合同變更處理
- 子公司借款合同書格式
- 空調(diào)設(shè)備采購合同分析
- 《電子煙知識培訓(xùn)》課件
- GB/T 30661.10-2024輪椅車座椅第10部分:體位支撐裝置的阻燃性要求和試驗方法
- 馬克思主義中國化進(jìn)程與青年學(xué)生使命擔(dān)當(dāng)Ⅱ?qū)W習(xí)通超星期末考試答案章節(jié)答案2024年
- 自動化生產(chǎn)線設(shè)備調(diào)試方案
- 2024-2030年中國醫(yī)藥冷鏈物流行業(yè)競爭格局及投資模式研究報告
- 2024年高中歷史教師資格考試面試試題及解答參考
- 《產(chǎn)后出血預(yù)防與處理指南(2023)》解讀課件
- 2024-2025學(xué)年第一學(xué)期高一級生物學(xué)科期中檢測
- 人教版英語八年級下冊 Unit 10 .現(xiàn)在完成時練習(xí)
- GB/T 19274-2024土工合成材料塑料土工格室
- 2023-2024學(xué)年浙江省杭州市拱墅區(qū)八年級(上)期末科學(xué)試卷
評論
0/150
提交評論