2022年湖南省長(zhǎng)沙市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022年湖南省長(zhǎng)沙市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022年湖南省長(zhǎng)沙市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022年湖南省長(zhǎng)沙市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022年湖南省長(zhǎng)沙市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年湖南省長(zhǎng)沙市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

2.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C

3.下列等式成立的是()。

A.

B.

C.

D.

4.A.A.

B.

C.

D.

5.

6.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面

7.設(shè)y=exsinx,則y'''=

A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

8.設(shè)f'(x)=1+x,則f(x)等于().A.A.1

B.X+X2+C

C.x++C

D.2x+x2+C

9.A.0B.1C.2D.任意值

10.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().

A.1B.0C.-1/2D.-1

11.

12.

13.

有()個(gè)間斷點(diǎn)。

A.1B.2C.3D.4

14.方程z=x2+y2表示的曲面是()

A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面

15.

16.設(shè)f(x)在x=2處可導(dǎo),且f'(2)=2,則等于().A.A.1/2B.1C.2D.4

17.

18.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

19.為二次積分為()。A.

B.

C.

D.

20.()。A.

B.

C.

D.

21.A.-cosxB.-ycosxC.cosxD.ycosx

22.

23.

24.A.A.為所給方程的解,但不是通解

B.為所給方程的解,但不-定是通解

C.為所給方程的通解

D.不為所給方程的解

25.

A.2x-2B.2y+4C.2x+2y+2D.2y+4+x2-2x26.()。A.3B.2C.1D.0

27.

28.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散29.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

30.方程x2+y2-2z=0表示的二次曲面是.

A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面31.方程2x2-y2=1表示的二次曲面是()。A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面

32.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面33.A.A.1/3B.3/4C.4/3D.3

34.

35.點(diǎn)(-1,-2,-5)關(guān)于yOz平面的對(duì)稱點(diǎn)是()

A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)36.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x

B.(Ax+B)e2x

C.Ax2e2x

D.x(Ax+B)e2x

37.

38.設(shè)函數(shù)y=(2+x)3,則y'=

A.(2+x)2

B.3(2+x)2

C.(2+x)4

D.3(2+x)4

39.平衡積分卡控制是()首創(chuàng)的。

A.戴明B.施樂公司C.卡普蘭和諾頓D.國(guó)際標(biāo)準(zhǔn)化組織

40.

41.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

42.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

43.

44.在穩(wěn)定性計(jì)算中,若用歐拉公式算得壓桿的臨界壓力為Fcr,而實(shí)際上壓桿屬于中柔度壓桿,則()。

A.并不影響壓桿的臨界壓力值

B.實(shí)際的臨界壓力大于Fcr,是偏于安全的

C.實(shí)際的臨界壓力小于Fcr,是偏于不安全的

D.實(shí)際的臨界壓力大于Fcr,是偏于不安全的

45.下列函數(shù)中,在x=0處可導(dǎo)的是()

A.y=|x|

B.

C.y=x3

D.y=lnx

46.方程y+2y+y=0的通解為

A.c1+c2e-x

B.e-x(c1+C2x)

C.c1e-x

D.c1e-x+c2ex

47.

48.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()

A.力系平衡

B.力系有合力

C.力系的合力偶矩等于平行四邊形ABCD的面積

D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍

49.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.

B.

C.

D.

50.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對(duì)二、填空題(20題)51.

52.

53.

54.

55.

56.57.

58.

59.

60.61.

62.

63.

64.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達(dá)式為________。

65.

66.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。

67.

68.

69.

70.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

三、計(jì)算題(20題)71.

72.

73.證明:74.將f(x)=e-2X展開為x的冪級(jí)數(shù).

75.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

76.求曲線在點(diǎn)(1,3)處的切線方程.77.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

78.

79.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.80.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).81.

82.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

83.求微分方程y"-4y'+4y=e-2x的通解.

84.85.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則86.

87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.88.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

89.求微分方程的通解.90.四、解答題(10題)91.

92.

93.

94.

95.

96.

97.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。

98.設(shè)z=x2y+2y2,求dz。

99.

100.五、高等數(shù)學(xué)(0題)101.已知某廠生產(chǎn)x件產(chǎn)品的成本為

問:若使平均成本最小,應(yīng)生產(chǎn)多少件產(chǎn)品?

六、解答題(0題)102.

參考答案

1.B

2.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。

3.C

4.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

可知應(yīng)選D.

5.A

6.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。

7.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).

由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

8.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì).

可知應(yīng)選C.

9.B

10.C解析:

11.D

12.C解析:

13.C

∵x=0,1,2,是f(x)的三個(gè)孤立間斷∴有3個(gè)間斷點(diǎn)。

14.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.

15.C解析:

16.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)在一點(diǎn)處的定義.

可知應(yīng)選B.

17.A

18.D

19.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為

故知應(yīng)選A。

20.C由不定積分基本公式可知

21.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

22.B解析:

23.B

24.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).

25.B解析:

26.A

27.C

28.D

29.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).

可知應(yīng)選C.

30.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。

31.B

32.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

33.B

34.B

35.D關(guān)于yOz平面對(duì)稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),故選D。

36.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為

y*=Qn(x)eαx,

Qn(x)為x的待定n次多項(xiàng)式.

當(dāng)α為單特征根時(shí),可設(shè)特解為

y*=xQn(x)eαx,

當(dāng)α為二重特征根時(shí),可設(shè)特解為

y*=x2Qn(x)eαx.

所給方程對(duì)應(yīng)齊次方程的特征方程為

r2-3r+2=0.

特征根為r1=1,r2=2.

自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.

37.B

38.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識(shí)點(diǎn)。因?yàn)閥=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.

39.C

40.B

41.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

42.D

43.C

44.B

45.C選項(xiàng)A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項(xiàng)B中,在x=0處不存在,即在x=0處不可導(dǎo);選項(xiàng)C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項(xiàng)D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒定義).

46.B

47.D

48.D

49.C

50.B;又∵分母x→0∴x=0是駐點(diǎn);;即f""(0)=一1<0,∴f(x)在x=0處取極大值

51.11解析:

52.53.0.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.

54.y=-x+1

55.00解析:

56.

57.

58.

59.x+2y-z-2=0

60.

61.π/4本題考查了定積分的知識(shí)點(diǎn)。

62.

63.(01]64.因?yàn)镈:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。

65.

66.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

67.0<k≤1

68.

69.-1

70.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。

71.

72.

73.

74.

75.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%76.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

77.函數(shù)的定義域?yàn)?/p>

注意

78.

79.

80.

列表:

說明

81.由一階線性微分方程通解公式有

82.

83.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

84.

85.由等價(jià)無窮小量的定義可知

86.

87.由二重積分物理意義知

88.

89.

90.

91.

92.

93.94.本題考查的知識(shí)點(diǎn)為求解-階線性微分方程.

將方程化為標(biāo)準(zhǔn)形式

求解一階線性微分方程??梢圆捎脙煞N解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論