版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年福建省三明市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面
4.A.A.π/4
B.π/2
C.π
D.2π
5.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
6.若x0為f(x)的極值點(diǎn),則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
7.談判是雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件()的過(guò)程。
A.達(dá)成協(xié)議B.爭(zhēng)取利益C.避免沖突D.不斷協(xié)商
8.設(shè)Y=e-3x,則dy等于().
A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
9.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營(yíng)單值進(jìn)行分類的。
A.業(yè)務(wù)增長(zhǎng)率和相對(duì)競(jìng)爭(zhēng)地位
B.業(yè)務(wù)增長(zhǎng)率和行業(yè)市場(chǎng)前景
C.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與相對(duì)競(jìng)爭(zhēng)地位
D.經(jīng)營(yíng)單位的競(jìng)爭(zhēng)能力與市場(chǎng)前景吸引力
10.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)
則x=0是f(x)的()。
A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)
11.
12.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件13.A.A.-(1/2)B.1/2C.-1D.214.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C15.
在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)
16.
17.A.0B.1/2C.1D.218.設(shè)是正項(xiàng)級(jí)數(shù),且un<υn(n=1,2,…),則下列命題正確的是()
A.B.C.D.
19.
20.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定二、填空題(20題)21.
22.
23.
24.
25.26.方程cosxsinydx+sinxcosydy=0的通解為_(kāi)__________.27.28.
29.
30.
31.32.
33.
34.35.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.求微分方程y"-4y'+4y=e-2x的通解.
43.
44.求微分方程的通解.45.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).48.
49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.50.51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.52.
53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.55.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).56.證明:57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則58.59.求曲線在點(diǎn)(1,3)處的切線方程.
60.
四、解答題(10題)61.
62.
63.
64.
65.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。66.
67.
68.69.設(shè)y=ln(1+x2),求dy。
70.
五、高等數(shù)學(xué)(0題)71.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)六、解答題(0題)72.
參考答案
1.B
2.C
3.A
4.B
5.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
6.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(a)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見(jiàn)的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
7.A解析:談判是指雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件達(dá)成協(xié)議的過(guò)程。
8.C
9.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場(chǎng)前景吸引力和經(jīng)營(yíng)單位的相對(duì)競(jìng)爭(zhēng)能力的劃分,可把企業(yè)的經(jīng)營(yíng)單位分成九大類。
10.C則x=0是f(x)的極小值點(diǎn)。
11.B
12.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
13.A
14.C
15.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。
16.B
17.D本題考查了二元函數(shù)的偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
18.B由正項(xiàng)級(jí)數(shù)的比較判別法可以得到,若小的級(jí)數(shù)發(fā)散,則大的級(jí)數(shù)必發(fā)散,故選B。
19.D解析:
20.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。
21.
22.
本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
23.
24.
解析:
25.
本題考查的知識(shí)點(diǎn)為:參數(shù)方程形式的函數(shù)求導(dǎo).
26.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識(shí)點(diǎn).
由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.
27.28.本題考查的知識(shí)點(diǎn)為重要極限公式。
29.-exsiny
30.
31.232.
33.x2+y2=Cx2+y2=C解析:
34.35.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx
36.
37.
38.xex(Asin2x+Bcos2x)由特征方程為r2-2r+5=0,得特征根為1±2i,而非齊次項(xiàng)為exsin2x,因此其特解應(yīng)設(shè)為y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).
39.3yx3y-13yx3y-1
解析:
40.
41.
42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
43.由一階線性微分方程通解公式有
44.
45.
46.函數(shù)的定義域?yàn)?/p>
注意
47.
列表:
說(shuō)明
48.
則
49.
50.
51.
52.
53.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%54.由二重積分物理意義知
55.
56.
57.由等價(jià)無(wú)窮小量的定義可知
58.
59.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇州站施工組織設(shè)計(jì)方案(幕墻)
- 二零二五年度金融行業(yè)IT運(yùn)維安全保障協(xié)議3篇
- 專業(yè)化海路物流合作合同(2024版)版B版
- 2025年度環(huán)保建筑材料推廣合作框架協(xié)議4篇
- 2025年度購(gòu)物中心場(chǎng)地合作開(kāi)發(fā)及商業(yè)運(yùn)營(yíng)合同4篇
- 二零二四圖書購(gòu)置項(xiàng)目與圖書館無(wú)障礙閱讀服務(wù)合同3篇
- 2025年度智能攤位管理系統(tǒng)開(kāi)發(fā)與實(shí)施合同4篇
- 2025年度劇本創(chuàng)作與版權(quán)授權(quán)管理合同3篇
- 二零二五版4S店汽車銷售合同樣本圖2篇
- 2025年度農(nóng)產(chǎn)品質(zhì)量安全追溯體系服務(wù)合同4篇
- 衡水市出租車駕駛員從業(yè)資格區(qū)域科目考試題庫(kù)(全真題庫(kù))
- 護(hù)理安全用氧培訓(xùn)課件
- 《三國(guó)演義》中人物性格探析研究性課題報(bào)告
- 注冊(cè)電氣工程師公共基礎(chǔ)高數(shù)輔導(dǎo)課件
- 土方勞務(wù)分包合同中鐵十一局
- 乳腺導(dǎo)管原位癌
- 冷庫(kù)管道應(yīng)急預(yù)案
- 司法考試必背大全(涵蓋所有法律考點(diǎn))
- 公共部分裝修工程 施工組織設(shè)計(jì)
- 《學(xué)習(xí)教育重要論述》考試復(fù)習(xí)題庫(kù)(共250余題)
- 裝飾裝修施工及擔(dān)保合同
評(píng)論
0/150
提交評(píng)論