版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年遼寧省本溪市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0
B.
C.
D.π
3.
4.()。A.e-6
B.e-2
C.e3
D.e6
5.
6.
7.若,則()。A.-1B.0C.1D.不存在
8.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
9.A.A.2/3B.3/2C.2D.3
10.()。A.3B.2C.1D.0
11.
12.()A.A.1B.2C.1/2D.-1
13.
A.
B.
C.
D.
14.
A.-e
B.-e-1
C.e-1
D.e
15.當(dāng)x→0時,x+x2+x3+x4為x的
A.等價無窮小B.2階無窮小C.3階無窮小D.4階無窮小
16.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
17.A.1/3B.1C.2D.3
18.
19.
20.設(shè)函數(shù)f(x)在點x0。處連續(xù),則下列結(jié)論正確的是().A.A.
B.
C.
D.
二、填空題(20題)21.
22.
23.
24.
25.設(shè)y=1nx,則y'=__________.
26.過點M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_________。
27.
28.設(shè)函數(shù)z=f(x,y)存在一階連續(xù)偏導(dǎo)數(shù),則全微分出dz=______.
29.
30.
31.
32.
33.
34.設(shè)y=f(x)在點x=0處可導(dǎo),且x=0為f(x)的極值點,則f(0)=.
35.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.
36.
37.
38.設(shè),則y'=________。
39.
40.設(shè)y=,則y=________。
三、計算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
43.求微分方程y"-4y'+4y=e-2x的通解.
44.求曲線在點(1,3)處的切線方程.
45.
46.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
47.
48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
49.證明:
50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
51.
52.
53.求微分方程的通解.
54.將f(x)=e-2X展開為x的冪級數(shù).
55.
56.
57.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
58.
59.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
60.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
四、解答題(10題)61.
62.
63.
64.
65.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.求函數(shù)
六、解答題(0題)72.
參考答案
1.B解析:
2.C本題考查的知識點為羅爾定理的條件與結(jié)論。
3.D
4.A
5.D
6.B
7.D不存在。
8.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
9.A
10.A
11.C
12.C由于f'(2)=1,則
13.D本題考查的知識點為導(dǎo)數(shù)運算.
因此選D.
14.C所給問題為反常積分問題,由定義可知
因此選C.
15.A本題考查了等價無窮小的知識點。
16.C本題考查的知識點為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
17.D解法1由于當(dāng)x一0時,sinax~ax,可知故選D.
解法2故選D.
18.C
19.C
20.D本題考查的知識點為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.
21.
22.1/π
23.
解析:
24.(-35)(-3,5)解析:
25.
26.
27.
本題考查的知識點為極限的運算.
若利用極限公式
如果利用無窮大量與無窮小量關(guān)系,直接推導(dǎo),可得
28.依全微分存在的充分條件知
29.
解析:
30.1
31.1/24
32.本題考查的知識點為偏導(dǎo)數(shù)的運算。由于z=x2+3xy+2y2-y,可得
33.1+2ln2
34.0.
本題考查的知識點為極值的必要條件.
由于y=f(x)在點x=0可導(dǎo),且x=0為f(x)的極值點,由極值的必要條件可知有f(0)=0.
35.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因為a>0,所以,f''(0)<0,所以x=0是極值點.又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因為a>0,故當(dāng)x=0時,f(x)最大,即b=2;當(dāng)x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
36.
37.-ln|x-1|+C
38.
39.
40.
41.
列表:
說明
42.函數(shù)的定義域為
注意
43.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
44.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
45.
46.
47.
48.
49.
50.由二重積分物理意義知
51.
52.
53.
54.
55.
56.
則
57.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
58.由一階線性微分方程通解公式有
59
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國人民大學(xué)《信息管理專業(yè)研究方法論與創(chuàng)新教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州軟件職業(yè)技術(shù)學(xué)院《體育產(chǎn)品概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)2024年體育自評結(jié)果
- 浙江電力職業(yè)技術(shù)學(xué)院《生產(chǎn)運作實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 長安大學(xué)興華學(xué)院《瑜伽基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 餐飲文化與創(chuàng)新模板
- 雙十一醫(yī)保新品發(fā)布
- 專業(yè)基礎(chǔ)-房地產(chǎn)經(jīng)紀(jì)人《專業(yè)基礎(chǔ)》模擬試卷5
- 三年級學(xué)習(xí)導(dǎo)向模板
- 氣候變遷與寒露模板
- 2024-2025學(xué)年華東師大新版八年級上冊數(shù)學(xué)期末復(fù)習(xí)試卷(含詳解)
- 《道路車輛 48V供電電壓的電氣及電子部件 電性能要求和試驗方法》文本以及編制說明
- 十八項醫(yī)療核心制度考試題與答案
- 2024年鄂爾多斯市國資產(chǎn)投資控股集團(tuán)限公司招聘管理單位遴選500模擬題附帶答案詳解
- 篝火晚會流程
- 船形烏頭提取工藝優(yōu)化
- 財務(wù)總監(jiān)個人述職報告
- 居家養(yǎng)老護(hù)理人員培訓(xùn)方案
- 江蘇省無錫市2024年中考語文試卷【附答案】
- 管理者的九大財務(wù)思維
- 四年級上冊數(shù)學(xué)應(yīng)用題練習(xí)100題附答案
評論
0/150
提交評論