版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年陜西省銅川市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)函數(shù)為().A.A.0B.1C.2D.不存在
2.
3.若x0為f(x)的極值點(diǎn),則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
4.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點(diǎn)
B.存在唯一零點(diǎn)
C.存在極大值點(diǎn)
D.存在極小值點(diǎn)
5.
6.()。A.e-2
B.e-2/3
C.e2/3
D.e2
7.方程x2+y2-z2=0表示的二次曲面是()。
A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面
8.
9.
10.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
11.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]
12.在初始發(fā)展階段,國際化經(jīng)營(yíng)的主要方式是()
A.直接投資B.進(jìn)出口貿(mào)易C.間接投資D.跨國投資
13.
14.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5
15.
16.()。A.
B.
C.
D.
17.
18.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計(jì)算時(shí),用以考慮縱向彎曲彎曲影響的系數(shù)是()。
A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)
19.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C
20.
二、填空題(20題)21.
22.
23.
24.二元函數(shù)z=x2+3xy+y2+2x,則=________。25.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.
26.
27.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.
28.
29.
30.31.
32.
33.
34.
35.36.曲線y=x3-6x的拐點(diǎn)坐標(biāo)為______.
37.設(shè)z=sin(x2+y2),則dz=________。
38.
39.
40.
三、計(jì)算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
42.
43.
44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).47.求曲線在點(diǎn)(1,3)處的切線方程.48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.49.
50.
51.證明:
52.求微分方程y"-4y'+4y=e-2x的通解.
53.54.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.55.56.將f(x)=e-2X展開為x的冪級(jí)數(shù).57.58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.59.求微分方程的通解.
60.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.
62.63.
64.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。
65.
66.
67.設(shè)z=ysup>2</sup>esup>3x</sup>,求dz。
68.(本題滿分8分)
69.70.設(shè)z=z(x,y)由x2+y3+2z=1確定,求五、高等數(shù)學(xué)(0題)71.設(shè)
求df(t)
六、解答題(0題)72.(本題滿分10分)將f(x)=ln(1+x2)展開為x的冪級(jí)數(shù).
參考答案
1.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
2.A解析:
3.C本題考查的知識(shí)點(diǎn)為函數(shù)極值點(diǎn)的性質(zhì).
若x0為函數(shù)y=f(x)的極值點(diǎn),則可能出現(xiàn)兩種情形:
(1)f(x)在點(diǎn)x0處不可導(dǎo),如y=|x|,在點(diǎn)x0=0處f(x)不可導(dǎo),但是點(diǎn)x0=0為f(a)=|x|的極值點(diǎn).
(2)f(x)在點(diǎn)x0可導(dǎo),則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項(xiàng)可知應(yīng)選C.
本題常見的錯(cuò)誤是選A.其原因是考生將極值的必要條件:“若f(x)在點(diǎn)x0可導(dǎo),且x0為f(x)的極值點(diǎn),則必有f'(x0)=0”認(rèn)為是極值的充分必要條件.
4.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).
綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.
5.B解析:
6.B
7.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.
8.B
9.D
10.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
11.B∵一1≤x一1≤1∴0≤x≤2。
12.B解析:在初始投資階段,企業(yè)從事國際化經(jīng)營(yíng)活動(dòng)的主要特點(diǎn)是活動(dòng)方式主要以進(jìn)出口貿(mào)易為主。
13.D解析:
14.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
15.D
16.C由不定積分基本公式可知
17.A
18.D
19.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。
20.D21.6.
本題考查的知識(shí)點(diǎn)為無窮小量階的比較.
22.1
23.x/1=y/2=z/-124.因?yàn)閦=x2+3xy+y2+2x,25.[-1,1
26.x+2y-z-2=0
27.
;本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.
由于x2+y2≤a2,y>0可以表示為
0≤θ≤π,0≤r≤a,
因此
28.3e3x3e3x
解析:
29.2m
30.
31.
32.0
33.
解析:
34.f(x)+Cf(x)+C解析:
35.解析:36.(0,0)本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的一般步驟,只需
(1)先求出y".
(2)令y"=0得出x1,…,xk.
(3)判定在點(diǎn)x1,x2,…,xk兩側(cè),y"的符號(hào)是否異號(hào).若在xk的兩側(cè)y"異號(hào),則點(diǎn)(xk,f(xk)為曲線y=f(x)的拐點(diǎn).
y=x3-6x,
y'=3x2-6,y"=6x.
令y"=0,得到x=0.當(dāng)x=0時(shí),y=0.
當(dāng)x<0時(shí),y"<0;當(dāng)x>0時(shí),y">0.因此點(diǎn)(0,0)為曲線y=x3-6x的拐點(diǎn).
本題出現(xiàn)較多的錯(cuò)誤為:填x=0.這個(gè)錯(cuò)誤產(chǎn)生的原因是對(duì)曲線拐點(diǎn)的概念不清楚.拐點(diǎn)的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點(diǎn)稱之為曲線的拐點(diǎn).其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號(hào)之后,再求出f(x0),則拐點(diǎn)為(x0,f(x0)).
注意極值點(diǎn)與拐點(diǎn)的不同之處!
37.2cos(x2+y2)(xdx+ydy)
38.1本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
39.1+2ln2
40.-2-2解析:
41.
42.
則
43.44.函數(shù)的定義域?yàn)?/p>
注意
45.由等價(jià)無窮小量的定義可知
46.
列表:
說明
47.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.由二重積分物理意義知
49.由一階線性微分方程通解公式有
50.
51.
52.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
53.
54.
55.
56.
57.
58.
59.
60.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
61.
62.
63.
64.
65.
66.
67.68.本題考查的知識(shí)點(diǎn)為定積分的計(jì)算.
69.
70.本題考查的知識(shí)點(diǎn)為求二元隱函數(shù)的偏導(dǎo)數(shù).
若z=z(x,y)由方程F(x,y,z)=0確定,求z對(duì)x,y的偏導(dǎo)數(shù)通常有兩種方法:
一是利用偏導(dǎo)數(shù)公式,當(dāng)需注意F'x,F(xiàn)'yF'z分別表示F(x,y,z)對(duì)x,y,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年文化藝術(shù)節(jié)組織與推廣合同
- 2024年汽車租賃合同簽訂指南3篇
- 眼睛保健操課程設(shè)計(jì)
- 2024年電商環(huán)境下知識(shí)產(chǎn)權(quán)保護(hù)合同
- 2024年能源投資與運(yùn)營(yíng)合同能源管理3篇
- 物流學(xué)課課程設(shè)計(jì)
- 竹子畫法課程設(shè)計(jì)
- 智慧物流課程設(shè)計(jì)
- 季節(jié)性施工技術(shù)措施
- 2024年中國雙室步進(jìn)后橋?qū)S们逑礄C(jī)市場(chǎng)調(diào)查研究報(bào)告
- 事業(yè)單位考試《綜合知識(shí)和能力測(cè)試》試卷
- 劇作策劃與管理智慧樹知到期末考試答案2024年
- 2024年河北交通投資集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 大學(xué)生勞動(dòng)教育-南京大學(xué)2中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 中國民族民間器樂 課件-2023-2024學(xué)年高中音樂湘教版(2019)必修音樂鑒賞
- 工廠籌建方案
- 長(zhǎng)沙民政職業(yè)技術(shù)學(xué)院?jiǎn)握小墩Z文》考試參考題庫(含答案)
- UPVC管道安裝施工方法
- 眶尖綜合征的護(hù)理查房
- 計(jì)算機(jī)基礎(chǔ)理論-進(jìn)制的概念及換算試題及答案
- 森林草原防火工作培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論