版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年內(nèi)蒙古自治區(qū)巴彥淖爾市普通高校對口單招高等數(shù)學一自考測試卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.設y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
2.
3.
4.
5.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
6.當x→0時,x2是x-ln(1+x)的().
A.較高階的無窮小B.等價無窮小C.同階但不等價無窮小D.較低階的無窮小
7.
8.則f(x)間斷點是x=()。A.2B.1C.0D.-1
9.
10.設y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx
11.曲線的水平漸近線的方程是()
A.y=2B.y=-2C.y=1D.y=-1
12.控制工作的實質(zhì)是()
A.糾正偏差B.衡量成效C.信息反饋D.擬定標準13.A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)14.設函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx15.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
16.
17.過曲線y=xlnx上M0點的切線平行于直線y=2x,則切點M0的坐標是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)18.=()。A.
B.
C.
D.
19.
20.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定二、填空題(20題)21.
22.設f(x)=1+cos2x,則f'(1)=__________。
23.
24.
25.
26.
27.
28.
29.
30.
31.若∫x0f(t)dt=2e3x-2,則f(x)=________。
32.
33.
34.過點(1,-1,0)且與直線平行的直線方程為______。35.36.37.
38.39.40.微分方程y"+y=0的通解為______.三、計算題(20題)41.
42.證明:43.當x一0時f(x)與sin2x是等價無窮小量,則44.45.求曲線在點(1,3)處的切線方程.
46.
47.
48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.49.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.50.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.55.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
56.57.求微分方程的通解.58.將f(x)=e-2X展開為x的冪級數(shù).
59.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
60.四、解答題(10題)61.
62.的面積A。
63.
64.
65.
66.(本題滿分10分)
67.
68.
69.
70.
五、高等數(shù)學(0題)71.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合六、解答題(0題)72.
參考答案
1.D本題考查的知識點為復合函數(shù)求導數(shù)的鏈式法則.
Y=sin2x,
則y'=cos(2x)·(2x)'=2cos2x.
可知應選D.
2.B
3.D
4.C
5.C
6.C解析:本題考查的知識點為無窮小階的比較.
由于
可知當x→0時,x2與x-ln(1+x)為同階但不等價無窮?。蕬xC.
7.B
8.Df(x)為分式,當X=-l時,分母x+1=0,分式?jīng)]有意義,因此點x=-1為f(x)的間斷點,故選D。
9.D
10.A
11.D
12.A解析:控制工作的實質(zhì)是糾正偏差。
13.A
14.B
15.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
16.B
17.D本題考查的知識點為導數(shù)的幾何意義.
由導數(shù)的幾何意義可知,若y=f(x)在點x0處可導,則曲線y=f(x)在點(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點M0的坐標為(e,e),可知應選D.
18.D
19.C
20.C
21.
22.-2sin2
23.
24.25.本題考查的知識點為求二元函數(shù)的全微分.
通常求二元函數(shù)的全微分的思路為:
26.y''=x(asinx+bcosx)
27.e
28.1/4
29.
30.
31.6e3x
32.
33.34.本題考查的知識點為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點向式方程可知所求直線方程為
35.本題考查的知識點為無窮小的性質(zhì)。
36.3本題考查了冪級數(shù)的收斂半徑的知識點.
所以收斂半徑R=3.
37.
38.
39.解析:40.y=C1cosx+C2sinx本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.
特征方程為r2+1=0,特征根為r=±i,因此所給微分方程的通解為y=C1cosx+C2sinx.
41.
42.
43.由等價無窮小量的定義可知
44.
45.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
46.47.由一階線性微分方程通解公式有
48.
49.
50.
則
51.解:原方程對應的齊次方程為y"-4y'+4y=0,
52.由二重積分物理意義知
53.函數(shù)的定義域為
注意
54.
列表:
說明
55.
56.
57.
58.
59.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
60.
61.解所給問題為參數(shù)方程求導問題.由于
62.
63.
64.
65.
66.本題考查的知識點為計算二重積分,選擇積分次序.
積分區(qū)域D如圖1—3所示.
D可以表示為
【解題指導】
如果將二重積分化為先對x后對y的積分,將變得復雜,因此考生應該學會選擇合適的積分次序.67.本題考查的知識點為二重積分的計算(極坐標系).
利用極坐標,區(qū)域D可以表示為
0≤0≤π,0≤r≤2,
如果積分區(qū)域為圓域或圓的-部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標計算較方便.
使用極坐標計算二重積分時,要先將區(qū)域D的邊界曲線化為極坐標下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度中醫(yī)養(yǎng)生產(chǎn)品海外市場推廣合同4篇
- 2025年度商業(yè)綜合體承包轉(zhuǎn)讓合同范本4篇
- 2025年度養(yǎng)老機構(gòu)場地租賃與養(yǎng)老服務分成管理合同3篇
- 2025年cfg樁基施工項目環(huán)境保護與生態(tài)修復合同3篇
- 2025年度智能家電維修個人勞務協(xié)議書4篇
- 2025年中國酚氨咖敏顆粒行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y戰(zhàn)略咨詢報告
- 2025年度汽車租賃與二手車交易服務合同3篇
- 2025年溫州家和物業(yè)管理有限公司招聘筆試參考題庫含答案解析
- 2025年溫州個人房屋買賣合同(含交易資金監(jiān)管)3篇
- 二零二五版離婚協(xié)議書模板:離婚后子女撫養(yǎng)及財產(chǎn)分割專案協(xié)議2篇
- 氧氣霧化吸入法
- 6月大學英語四級真題(CET4)及答案解析
- 氣排球競賽規(guī)則
- 電梯維修保養(yǎng)報價書模板
- 危險化學品目錄2023
- FZ/T 81024-2022機織披風
- GB/T 33141-2016鎂鋰合金鑄錠
- 2023譯林版新教材高中英語必修二全冊重點短語歸納小結(jié)
- JJF 1069-2012 法定計量檢定機構(gòu)考核規(guī)范(培訓講稿)
- 綜合管廊工程施工技術(shù)概述課件
- 公積金提取單身聲明
評論
0/150
提交評論