2023年四川省內(nèi)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁
2023年四川省內(nèi)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁
2023年四川省內(nèi)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁
2023年四川省內(nèi)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁
2023年四川省內(nèi)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年四川省內(nèi)江市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________一、單選題(20題)1.

2.

3.()。A.3B.2C.1D.0

4.

5.

6.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

7.

8.A.f(2x)

B.2f(x)

C.f(-2x)

D.-2f(x)

9.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無窮小量f(x)與g(x),有

A.f(x)對(duì)于g(x)是高階的無窮小量

B.f(x)對(duì)于g(x)是低階的無窮小量

C.f(x)與g(x)為同階無窮小量,但非等價(jià)無窮小量

D.f(x)與g(x)為等價(jià)無窮小量

10.A.0B.2C.2f(-1)D.2f(1)

11.A.A.1/3B.3/4C.4/3D.3

12.()。A.sinx+ccosx

B.sinx-xcosx

C.xcosx-sinx

D.-(sinx+xcosx)

13.

14.A.1/x2

B.1/x

C.e-x

D.1/(1+x)2

15.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面

16.

17.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無水平漸近線,又無鉛直漸近線

18.績(jī)效評(píng)估的第一個(gè)步驟是()

A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見

19.

20.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.

29.∫(x2-1)dx=________。

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.設(shè),則y'=______.

40.

三、計(jì)算題(20題)41.

42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

44.證明:

45.

46.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

47.

48.

49.求微分方程y"-4y'+4y=e-2x的通解.

50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

51.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

53.求曲線在點(diǎn)(1,3)處的切線方程.

54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

55.

56.

57.將f(x)=e-2X展開為x的冪級(jí)數(shù).

58.求微分方程的通解.

59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

60.

四、解答題(10題)61.

62.

63.

64.

65.

66.

67.

68.設(shè)y=ln(1+x2),求dy。

69.

70.設(shè)y=(1/x)+ln(1+x),求y'。

五、高等數(shù)學(xué)(0題)71.

六、解答題(0題)72.某廠要生產(chǎn)容積為Vo的圓柱形罐頭盒,問怎樣設(shè)計(jì)才能使所用材料最省?

參考答案

1.B

2.D

3.A

4.B

5.B

6.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

7.A

8.A由可變上限積分求導(dǎo)公式可知因此選A.

9.C

10.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

11.B

12.A

13.B解析:

14.A本題考查了反常積分的斂散性的知識(shí)點(diǎn)。

15.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

16.A

17.A

18.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見;(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。

19.C

20.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

21.

22.

23.

24.

25.

解析:

26.

27.ln|1-cosx|+Cln|1-cosx|+C解析:

28.

29.

30.2.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

能利用洛必達(dá)法則求解.

如果計(jì)算極限,應(yīng)該先判定其類型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):

若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.

若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無窮大量.

檢查是否滿足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.

31.

32.1本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

33.0

34.

35.

本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).

36.

37.

38.

39.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.

40.

41.由一階線性微分方程通解公式有

42.函數(shù)的定義域?yàn)?/p>

注意

43.

44.

45.

46.由二重積分物理意義知

47.

48.

49.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

50.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

51.

列表:

說明

52.

53.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論