版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年四川省內(nèi)江市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
2.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
3.
4.
5.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合
6.A.A.arctanx2
B.2xarctanx
C.2xarctanx2
D.
7.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
8.
9.當x→0時,x是ln(1+x2)的
A.高階無窮小B.同階但不等價無窮小C.等價無窮小D.低階無窮小
10.
11.A.A.4/3B.1C.2/3D.1/3
12.A.A.0B.1/2C.1D.2
13.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點
B.存在唯一零點
C.存在極大值點
D.存在極小值點
14.A.A.2/3B.3/2C.2D.3
15.過點(0,2,4)且平行于平面x+2z=1,y-3z=2的直線方程為
A.
B.
C.
D.-2x+3(y-2)+z-4=0
16.設(shè)f(x)的一個原函數(shù)為x2,則f'(x)等于().
A.
B.x2
C.2x
D.2
17.
18.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
19.曲線y=lnx-2在點(e,-1)的切線方程為()A.A.
B.
C.
D.
20.()A.A.(-∞,-3)和(3,+∞)
B.(-3,3)
C.(-∞,O)和(0,+∞)
D.(-3,0)和(0,3)
二、填空題(20題)21.
22.交換二重積分次序=______.
23.
則b__________.
24.
25.
26.
27.
28.當x=1時,f(x)=x3+3px+q取到極值(其中q為任意常數(shù)),則p=______.
29.函數(shù)f(x)=2x2-x+1,在區(qū)間[-1,2]上滿足拉格朗日中值定理的ξ=_________。
30.過原點且與直線垂直的平面方程為______.
31.過原點(0,0,0)且垂直于向量(1,1,1)的平面方程為________。
32.
33.
34.
35.
36.
37.
38.
39.設(shè)區(qū)域D為y=x2,x=y2圍成的在第一象限內(nèi)的區(qū)域,則=______.
40.
三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
42.求曲線在點(1,3)處的切線方程.
43.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
44.
45.
46.當x一0時f(x)與sin2x是等價無窮小量,則
47.將f(x)=e-2X展開為x的冪級數(shù).
48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
49.
50.
51.
52.求微分方程的通解.
53.
54.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
55.求微分方程y"-4y'+4y=e-2x的通解.
56.
57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
60.證明:
四、解答題(10題)61.設(shè)y=y(x)由方程X2+2y3+2xy+3y-x=1確定,求y'.
62.
63.
64.
65.
66.
67.判定曲線y=3x3-4x2-x+1的凹向.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.下列命題不正確的是()。
A.兩個無窮大量之和仍為無窮大量
B.上萬個無窮小量之和仍為無窮小量
C.兩個無窮大量之積仍為無窮大量
D.兩個有界變量之和仍為有界變量
六、解答題(0題)72.求由曲線xy=1及直線y=x,y=2所圍圖形的面積A。
參考答案
1.D本題考查的知識點為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈式法則。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時丟掉項而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項。
2.C
3.B解析:
4.D
5.A本題考查的知識點為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時,兩平面平行;
當時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。
6.C
7.B
8.C
9.D解析:
10.C
11.C
12.C本題考查的知識點為函數(shù)連續(xù)性的概念.
13.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點定理可知,y=f(x)在(a,b)內(nèi)至少存在一個零點.又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點,則至多存在一個.
綜合上述f(x)在(a,b)內(nèi)存在唯一零點,故選B.
14.A
15.C
16.D解析:本題考查的知識點為原函數(shù)的概念.
由于x2為f(x)的原函數(shù),因此
f(x)=(x2)'=2x,
因此
f'(x)=2.
可知應(yīng)選D.
17.B
18.B本題考查的知識點為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
19.D
20.D
21.<0本題考查了反常積分的斂散性(比較判別法)的知識點。
22.
本題考查的知識點為交換二重積分次序.
積分區(qū)域D:0≤x≤1,x2≤y≤x
積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此
23.所以b=2。所以b=2。
24.ln|1-cosx|+Cln|1-cosx|+C解析:
25.yf''(xy)+f'(x+y)+yf''(x+y)
26.
27.
28.-1f'(x)=3x2+3p,f'(1)=3十3p=0,所以p=-1.
29.1/2
30.2x+y-3z=0本題考查的知識點為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y-3z=0
31.x+y+z=0
32.x-arctanx+C
33.
本題考查的知識點為不定積分計算.
34.|x|
35.
36.22解析:
37.4x3y
38.eyey
解析:
39.1/3;本題考查的知識點為二重積分的計算.
40.1/6
本題考查的知識點為計算二重積分.
41.
42.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
44.
45.
46.由等價無窮小量的定義可知
47.
48.由二重積分物理意義知
49.
50.
51.由一階線性微分方程通解公式有
52.
53.
則
54.
55.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
56.
57.
列表:
說明
58.函數(shù)的定義域為
注意
59.
60.
61.解法1將所給方程兩端關(guān)于x求導(dǎo),可得2x+6y2·y'+2(y+xy')+3y'-1=0,整理可得
解法2令F(x,y)=x2+2y3+2xy+3y-x-1,則本題考查的知識點為隱函數(shù)求導(dǎo)法.
y=y(x)由方程F(x,Y)=0確定,求y'通常有兩種方法:
一是將F(x,y)=0兩端關(guān)于x求導(dǎo),認定y為中間變量,得到含有y'的方程,從中解出y'.
二是利用隱函數(shù)求導(dǎo)公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國Mini LED行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 2025-2030年中國搬家行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國風(fēng)電設(shè)備行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025年網(wǎng)絡(luò)工程師工作計劃(共5篇)
- 廣東省2024屆高三下學(xué)期三模英語試題
- 高端智能專用車制造項目環(huán)境影響報告書批前
- 年產(chǎn)100萬立方建筑用砂巖新建項目資金申請報告
- 二年級數(shù)學(xué)計算題專項練習(xí)1000題匯編集錦
- 2023屆江蘇省蘇州市高三二??记澳M地理卷(一)附答案
- 手工制瓷技藝2
- 口腔修復(fù)學(xué)(全套課件290p)課件
- 小學(xué)生心理問題的表現(xiàn)及應(yīng)對措施【全國一等獎】
- 小學(xué)生科普人工智能
- 初中學(xué)段勞動任務(wù)清單(七到九年級)
- 退耕還林監(jiān)理規(guī)劃
- GB/T 1335.2-2008服裝號型女子
- GB 31247-2014電纜及光纜燃燒性能分級
- DCC20網(wǎng)絡(luò)型監(jiān)視與報警
- 項目實施路徑課件
- 《簡單教數(shù)學(xué)》讀書心得課件
- 《室速的診斷及治療》課件
評論
0/150
提交評論