下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線:()的一個(gè)焦點(diǎn)為,過(guò)點(diǎn)的直線與雙曲線交于、兩點(diǎn),且的中點(diǎn)為,則的方程為()A. B. C. D.2.如圖所示,為了測(cè)量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開(kāi)2百海里到達(dá)處,此時(shí)測(cè)得在的北偏西的方向上,再開(kāi)回處,由向西開(kāi)百海里到達(dá)處,測(cè)得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.3.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.4.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.5.若集合,,則A. B. C. D.6.設(shè),是方程的兩個(gè)不等實(shí)數(shù)根,記().下列兩個(gè)命題()①數(shù)列的任意一項(xiàng)都是正整數(shù);②數(shù)列存在某一項(xiàng)是5的倍數(shù).A.①正確,②錯(cuò)誤 B.①錯(cuò)誤,②正確C.①②都正確 D.①②都錯(cuò)誤7.若,則的值為()A. B. C. D.8.執(zhí)行下面的程序框圖,如果輸入,,則計(jì)算機(jī)輸出的數(shù)是()A. B. C. D.9.的展開(kāi)式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-210.已知雙曲線C:()的左、右焦點(diǎn)分別為,過(guò)的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.11.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點(diǎn),則異面直線EF與BD所成角的余弦值為()A. B. C. D.12.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.戊戌年結(jié)束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人,分別奔赴四所不同的學(xué)校參加演講,則不同的分配方案有_________種(用數(shù)字作答),14.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.15.在中,已知,,是邊的垂直平分線上的一點(diǎn),則__________.16.設(shè)為數(shù)列的前項(xiàng)和,若,則____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。18.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.19.(12分)已知函數(shù),曲線在點(diǎn)處的切線在y軸上的截距為.(1)求a;(2)討論函數(shù)和的單調(diào)性;(3)設(shè),求證:.20.(12分)已知函數(shù).(1)解不等式:;(2)求證:.21.(12分)已知中,,,是上一點(diǎn).(1)若,求的長(zhǎng);(2)若,,求的值.22.(10分)已知函數(shù)f(x)=x(1)討論fx(2)當(dāng)x≥-1時(shí),fx+a
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,結(jié)合焦點(diǎn)的坐標(biāo),可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點(diǎn)為,可得,解答,又由,即,解得,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:D.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程的求解,其中解答中屬于運(yùn)用雙曲線的焦點(diǎn)和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.2.B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長(zhǎng)度,再根據(jù)正弦定理計(jì)算出的長(zhǎng)度,最后利用余弦定理求解出的長(zhǎng)度即可.【詳解】由題意可知:,所以,,所以,所以,又因?yàn)椋?,所?故選:B.【點(diǎn)睛】本題考查解三角形中的角度問(wèn)題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問(wèn)題的關(guān)鍵.3.B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個(gè)圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對(duì)稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.4.C【解析】程序在運(yùn)行過(guò)程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時(shí),要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計(jì)數(shù)時(shí),注意要統(tǒng)計(jì)的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.5.C【解析】
解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛颍?,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.6.A【解析】
利用韋達(dá)定理可得,,結(jié)合可推出,再計(jì)算出,,從而推出①正確;再利用遞推公式依次計(jì)算數(shù)列中的各項(xiàng),以此判斷②的正誤.【詳解】因?yàn)?是方程的兩個(gè)不等實(shí)數(shù)根,所以,,因?yàn)?所以,即當(dāng)時(shí),數(shù)列中的任一項(xiàng)都等于其前兩項(xiàng)之和,又,,所以,,,以此類(lèi)推,即可知數(shù)列的任意一項(xiàng)都是正整數(shù),故①正確;若數(shù)列存在某一項(xiàng)是5的倍數(shù),則此項(xiàng)個(gè)位數(shù)字應(yīng)當(dāng)為0或5,由,,依次計(jì)算可知,數(shù)列中各項(xiàng)的個(gè)位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個(gè)位數(shù)字為0或5的項(xiàng),故②錯(cuò)誤;故選:A.【點(diǎn)睛】本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計(jì)算能力.7.C【解析】
根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開(kāi)式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開(kāi)式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力8.B【解析】
先明確該程序框圖的功能是計(jì)算兩個(gè)數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計(jì)算即可.【詳解】本程序框圖的功能是計(jì)算,中的最大公約數(shù),所以,,,故當(dāng)輸入,,則計(jì)算機(jī)輸出的數(shù)是57.故選:B.【點(diǎn)睛】本題考查程序框圖的功能,做此類(lèi)題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.9.C【解析】
利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項(xiàng)展開(kāi)式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.10.D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.11.C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點(diǎn)睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12.B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀?!二、填空題:本題共4小題,每小題5分,共20分。13.1080【解析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人有種,再分別奔赴四所不同的學(xué)校參加演講有種,然后用分步計(jì)數(shù)原理求解.【詳解】將六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人有種,再分別奔赴四所不同的學(xué)校參加演講有種,則不同的分配方案有種.故答案為:1080【點(diǎn)睛】本題主要考查分組分配問(wèn)題,還考查了理解辨析的能力,屬于中檔題.14.【解析】
利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡(jiǎn)求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】
作出圖形,設(shè)點(diǎn)為線段的中點(diǎn),可得出且,進(jìn)而可計(jì)算出的值.【詳解】設(shè)點(diǎn)為線段的中點(diǎn),則,,,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的計(jì)算,涉及平面向量數(shù)量積運(yùn)算律的應(yīng)用,解答的關(guān)鍵就是選擇合適的基底表示向量,考查計(jì)算能力,屬于中等題.16.【解析】
當(dāng)時(shí),由,解得,當(dāng)時(shí),,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項(xiàng)公式.【詳解】當(dāng)時(shí),,即,當(dāng)時(shí),,兩式相減可得,即,即,故數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以.故答案為:【點(diǎn)睛】本題考查數(shù)列的前項(xiàng)和與通項(xiàng)公式的關(guān)系,還考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)證明;(2)【解析】
(1)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分類(lèi)討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說(shuō)明函數(shù)存在極值.【詳解】(1)當(dāng)時(shí),,于是,.又因?yàn)?,?dāng)時(shí),且.故當(dāng)時(shí),,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2)方法一:由題意在上存在極值,則在上存在零點(diǎn),①當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);所以為函數(shù)的極小值點(diǎn);②當(dāng)時(shí),在上成立,所以在上單調(diào)遞增,所以在上沒(méi)有極值;③當(dāng)時(shí),在上成立,所以在上單調(diào)遞減,所以在上沒(méi)有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點(diǎn).即在上存在零點(diǎn).設(shè),,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域?yàn)?,所以,?dāng)實(shí)數(shù)時(shí),在上存在零點(diǎn).下面證明,當(dāng)時(shí),函數(shù)在上存在極值.事實(shí)上,當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);即為函數(shù)的極小值點(diǎn).綜上所述,當(dāng)時(shí),函數(shù)在上存在極值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題.18.(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時(shí),取得最小值.在中,由余弦定理可得,因?yàn)榈淖畲笾挡恍∮冢?,解得,?jīng)驗(yàn)證知,所以.即兩處噴泉間距離的最小值為.【點(diǎn)睛】本題考查解三角形在實(shí)際中的應(yīng)用,解題時(shí)要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進(jìn)行求解.解題時(shí)要注意三角形邊角關(guān)系的運(yùn)用,同時(shí)還要注意所得結(jié)果要符合實(shí)際意義.19.(1)(2)為減函數(shù),為增函數(shù).(3)證明見(jiàn)解析【解析】
(1)求出導(dǎo)函數(shù),求出切線方程,令得切線的縱截距,可得(必須利用函數(shù)的單調(diào)性求解);(2)求函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的正負(fù)確定單調(diào)性;(3)不等式變形為,由遞減,得(),即,即,依次放縮,.不等式,遞增得(),,,,先證,然后同樣放縮得出結(jié)論.【詳解】解:(1)對(duì)求導(dǎo),得.因此.又因?yàn)?,所以曲線在點(diǎn)處的切線方程為,即.由題意,.顯然,適合上式.令,求導(dǎo)得,因此為增函數(shù):故是唯一解.(2)由(1)可知,,因?yàn)椋詾闇p函數(shù).因?yàn)?,所以為增函?shù).(3)證明:由,易得.由(2)可知,在上為減函數(shù).因此,當(dāng)時(shí),,即.令,得,即.因此,當(dāng)時(shí),.所以成立.下面證明:.由(2)可知,在上為增函數(shù).因此,當(dāng)時(shí),,即.因此,即.令,得,即.當(dāng)時(shí),.因?yàn)椋?,所?所以,當(dāng)時(shí),.所以,當(dāng)時(shí),成立.綜上所述,當(dāng)時(shí),成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查用導(dǎo)數(shù)證明不等式.本題中不等式的證明,考查了轉(zhuǎn)化與化歸的能力,把不等式變形后利用第(2)小題函數(shù)的單調(diào)性得出數(shù)列的不等關(guān)系:,.這是最關(guān)鍵的一步.然后一步一步放縮即可證明.本題屬于困難題.20.(1);(2)見(jiàn)解析.【解析】
(1)代入得,分類(lèi)討論,解不等式即可;(2)利用絕對(duì)值不等式得性質(zhì),,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對(duì)于,可得.又,由于,所以.又由于,于是.所以.【點(diǎn)睛】本題考查了絕對(duì)值不等式得求解和恒成立問(wèn)題,考查了學(xué)生分類(lèi)討論,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算能力,屬于中檔題.21.(1)(2)【解析】
(1)運(yùn)用三角形面積公式求出的長(zhǎng)度,然后再運(yùn)用余弦定理求出的長(zhǎng).(2)運(yùn)用正弦定理分別表示出和,結(jié)合已知條件計(jì)算出結(jié)果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點(diǎn)睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結(jié)合三角形熟練運(yùn)用各公式是解題關(guān)鍵,此類(lèi)題目是??碱}型,能夠運(yùn)用公式進(jìn)行邊角互化,需要掌握解題方法.22.(1)見(jiàn)解析;(2)-∞,1【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對(duì)a分類(lèi)討論,即可得出單調(diào)性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當(dāng)x=-1時(shí),0≤-1e+1恒成立.當(dāng)x>-1時(shí),a≤xe【詳解】解法一:(1)f①當(dāng)a≤0時(shí),x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調(diào)遞減,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)店美工試題庫(kù)及參考答案
- 吉林省長(zhǎng)春市寬城區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 養(yǎng)老院老人心理咨詢師激勵(lì)制度
- 養(yǎng)老院老人康復(fù)理療服務(wù)質(zhì)量管理制度
- 《付出總有收獲》課件
- 《VFP系統(tǒng)準(zhǔn)備》課件
- 房屋預(yù)售合同(2篇)
- 2024年特色農(nóng)產(chǎn)品種植配套農(nóng)機(jī)采購(gòu)合同2篇
- 《生命的延續(xù)》課件
- 2025年黃山b2貨運(yùn)資格證多少道題
- 夫妻債務(wù)約定協(xié)議書(shū)
- 訂購(gòu)藍(lán)莓合同范例
- 3.2推動(dòng)經(jīng)濟(jì)高質(zhì)量發(fā)展課件-高中政治統(tǒng)編版必修二經(jīng)濟(jì)與社會(huì)
- 2024年宣傳文化工作總結(jié)(3篇)
- 美團(tuán)課件無(wú)水印
- 《金融學(xué)原理》期末考試復(fù)習(xí)題庫(kù)(含答案)
- 2023年北京腫瘤醫(yī)院(含社會(huì)人員)招聘考試真題
- 南京信息工程大學(xué)《高等代數(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 口腔診所耗材管理制度實(shí)施細(xì)則
- 保護(hù)環(huán)境志愿活動(dòng)
- Unit1復(fù)合不定代詞專(zhuān)項(xiàng)練習(xí) 人教版八年級(jí)英語(yǔ)上冊(cè)
評(píng)論
0/150
提交評(píng)論