下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省大理市鎮(zhèn)第一初級中學(xué)2021年高二數(shù)學(xué)文上學(xué)期期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.在等差數(shù)列{an}中,若,則的值為(
)A.24 B.36 C.48 D.60參考答案:C【分析】先設(shè)等差數(shù)列的公差為,根據(jù)題中條件求出,進(jìn)而可求出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,由等差?shù)列的性質(zhì)得,所以.故選C【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),熟記等差數(shù)列的通項(xiàng)公式與性質(zhì)即可,屬于基礎(chǔ)題型.
2.直線的傾斜角為
(
)A.
B. C.
D.參考答案:D3.已知i是虛數(shù)單位,若復(fù)數(shù)為純虛數(shù)(a,),則(
)A.1 B. C.2 D.3參考答案:A由題意得為純虛數(shù),所以,故。所以。選A。4.一動(dòng)圓與圓O:x2+y2=1外切,與圓C:x2+y2-6x+8=0內(nèi)切,那么動(dòng)圓的圓心的軌跡是(A)圓
(B)橢圓
(C)雙曲線的一支
(D)拋物線參考答案:C略5.已知橢圓的焦距為6,則k的值是
_______.參考答案:略6.已知是(
)
A.等邊三角形
B等腰三角形
C直角三角形
D以上都不對參考答案:D7.拋物線在點(diǎn)M(,)處的切線的傾斜角是(
)A.30°
B.45°
C.60°
D.90°參考答案:B8.若,則目標(biāo)函數(shù)z=x+2y的取值范圍是A.
B.
C.
D.參考答案:B9.如圖,下列哪個(gè)運(yùn)算結(jié)果可以用向量表示
(
)A.
B.
C.
D.參考答案:D略10.若變量滿足約束條件則的最大值為()
A.4
B.3
C.2
D.1參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.若,則的最小值為
.參考答案:12.如圖,用4種不同的顏色對圖中5個(gè)區(qū)域涂色(4種顏色全部使用),要求每個(gè)區(qū)域涂一種顏色,相鄰的區(qū)域不能涂相同的顏色,則不同的涂色方法有
種.(用數(shù)字作答)參考答案:96【考點(diǎn)】排列、組合及簡單計(jì)數(shù)問題.【分析】本題是一個(gè)分步計(jì)數(shù)問題,首先給最左邊一塊涂色,有24種結(jié)果,再給左邊第二塊涂色,最后涂第三塊,根據(jù)分步計(jì)數(shù)原理得到結(jié)果.【解答】解:由題意知本題是一個(gè)分步計(jì)數(shù)問題,第一步:涂區(qū)域1,有4種方法;第二步:涂區(qū)域2,有3種方法;第三步:涂區(qū)域4,有2種方法(此前三步已經(jīng)用去三種顏色);第四步:涂區(qū)域3,分兩類:第一類,3與1同色,則區(qū)域5涂第四種顏色;第二類,區(qū)域3與1不同色,則涂第四種顏色,此時(shí)區(qū)域5就可以涂區(qū)域1或區(qū)域2或區(qū)域3中的任意一種顏色,有3種方法.所以,不同的涂色種數(shù)有4×3×2×(1×1+1×3)=96種.故答案為:96.【點(diǎn)評】本題考查計(jì)數(shù)原理的應(yīng)用,本題解題的關(guān)鍵是注意條件中所給的相同的區(qū)域不能用相同的顏色,因此在涂第二塊時(shí),要不和第一塊同色.13.已知集合,,則_
_.參考答案:14.函數(shù)y=lg(12+x﹣x2)的定義域是
.參考答案:{x|﹣3<x<4}【考點(diǎn)】函數(shù)的定義域及其求法.【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】令12+x﹣x2>0,解不等式即可.【解答】解:由12+x﹣x2>0,即x2﹣x﹣12<0解得﹣3<x<4.所以函數(shù)的定義域?yàn)閧x|﹣3<x<4}.故答案為:{x|﹣3<x<4}.【點(diǎn)評】本題考查函數(shù)定義域的求解,屬基礎(chǔ)題,難度不大.15.=
.參考答案:略16.函數(shù)f(x)=x3+4x+5的圖象在x=1處的切線在x軸上的截距為.參考答案:【考點(diǎn)】利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程;直線的截距式方程.【分析】欲求在點(diǎn)x=1處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率得到直線方程,最后令即可求得在x軸上的截距.從而問題解決.【解答】解:∵f(x)=x3+4x+5,∴f'(x)=3x2+4,當(dāng)x=1時(shí),y'=7得切線的斜率為7,所以k=7;所以曲線在點(diǎn)(1,10)處的切線方程為:y﹣10=7×(x﹣1),令y=0得x=.故答案為:.【點(diǎn)評】本小題主要考查直線的斜率、直線的方程、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識,考查運(yùn)算求解能力.屬于基礎(chǔ)題.17.若,則的最小值是
參考答案:3三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且=2csinA(1)確定角C的大小;(2)若c=,且△ABC的面積為,求a+b的值.參考答案:【考點(diǎn)】解三角形.【分析】(1)利用正弦定理把已知條件轉(zhuǎn)化成角的正弦,整理可求得sinC,進(jìn)而求得C.(2)利用三角形面積求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A銳角,∴sinA>0,∴,又∵C銳角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面積得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b為正,所以a+b=5.19.(12分)甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則:每人從備選的10道題中一次性抽取3道題獨(dú)立作答,至少答對2道題即闖關(guān)成功.已知10道備選題中,甲只能答對其中的6道題,乙答對每道題的概率都是.(Ⅰ)求甲闖關(guān)成功的概率;(Ⅱ)設(shè)乙答對題目的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.參考答案:(Ⅰ)設(shè)“甲闖關(guān)成功”為事件;……………4分(Ⅱ)依題意,可能取的值為0,1,2,3……………5分……………9分所以的分布列為X0123P…10分…………………12分(或)20.已知橢圓C:+=1(a>b>0)的離心率e=,且長軸長等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)F1,F(xiàn)2是橢圓C的兩個(gè)焦點(diǎn),⊙O是以F1,F(xiàn)2為直徑的圓,直線l:y=kx+m與⊙O相切,并與橢圓C交于不同的兩點(diǎn)A,B,若?=,求k的值.參考答案:(I)有題義長軸長為4,即2a=4,解得:a=2,
∵橢圓C的離心率e=,∴c=1,
解得:b2=3,橢圓的方程為:+=1;
(II)由直線l與圓O相切,得:=1,即:m2=1+k2
設(shè)A(x1,y1)B(x2,y2)
由
消去y,
整理得:(3+4k2)x2+8kmx+4m2-12=0,∴x1+x2=-,x1x2=,
∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2+km(-)+m2=∴x1x2+y1y2=+=
∵m2=1+k2∴x1x2+y1y2==-,解得:k2=,∴k的值為:±.21.如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.()求證:平面AEC⊥平面PDB.()當(dāng)PD=AB,且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大?。畢⒖即鸢福海ǎ┳C明如下.()(或)()證明:∵是正方形,∴,又∵底面,∴,∵,∴面,又∵面,∴面面.()設(shè),連接,由()可知平面,∴為與平面所成的角,又∵,分別為,中點(diǎn),∴,,又∵底面,∴底面,∴,在中,,∴,即與平面所成的角的大小為.22.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ(1)求圓C的直角坐標(biāo)方程;(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A、B,求的最小值.參考答案:【考點(diǎn)】QH:參數(shù)方程化成普通方程.【分析】(1)利用極坐標(biāo)與直角坐標(biāo)的互化方法,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智慧能源管理安全生產(chǎn)承包責(zé)任制合同書范文2篇
- 2024潤滑油購銷合同樣本
- 高中信息技術(shù)粵教版必修說課稿 -4.2.3 信息智能處理的應(yīng)用價(jià)值-001
- 第二單元 單元導(dǎo)引 說課稿 2024-2025學(xué)年統(tǒng)編版高中語文選擇性必修上冊001
- 2024版音響設(shè)備購買合同
- 小班音樂教育活動(dòng)策劃方案五篇
- 2024年短視頻宣傳制作合同3篇
- 2025版口腔診所與醫(yī)療機(jī)構(gòu)合作的口腔醫(yī)療人才培養(yǎng)項(xiàng)目承包協(xié)議3篇
- 2024年設(shè)備租賃與融資合同
- 布魯克林秘案劇情解析
- 2024-2025學(xué)年新疆省克孜勒蘇柯爾克孜自治州三年級數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析
- 舊設(shè)備拆除合同安全責(zé)任書
- 隱患排查治理管理規(guī)定
- 2025材料供貨合同樣本
- 豪華酒店翻新工程協(xié)議
- 經(jīng)濟(jì)學(xué)原理模擬題含參考答案
- 幼兒園一日常規(guī)安全管理
- 考研心理學(xué)專業(yè)基礎(chǔ)(312)研究生考試試題及解答參考(2025年)
- 科技強(qiáng)國建設(shè)視域下拔尖創(chuàng)新人才價(jià)值觀引導(dǎo)研究
- 馬鞍山酒柜定制合同范例
- 《電梯曳引系統(tǒng)設(shè)計(jì)技術(shù)要求》
評論
0/150
提交評論