版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年山東省淄博市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.設(shè)f(x)在點x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點x0必定可導(dǎo)B.f(x)在點x0必定不可導(dǎo)C.必定存在D.可能不存在
2.
3.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
4.
5.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
6.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.
B.
C.
D.
7.
8.設(shè)z=y2x,則等于().A.2xy2x-11
B.2y2x
C.y2xlny
D.2y2xlny
9.
A.
B.1
C.2
D.+∞
10.設(shè)k>0,則級數(shù)為().A.A.條件收斂B.絕對收斂C.發(fā)散D.收斂性與k有關(guān)11.()。A.
B.
C.
D.
12.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定13.設(shè)方程y''-2y'-3y=f(x)有特解y*,則它的通解為A.y=C1e-x+C2e3x+y*
B.y=C1e-x+C2e3x
C.y=C1xe-x+C2e3x+y*
D.y=C1ex+C2e-3x+y*
14.
15.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx
16.
17.某技術(shù)專家,原來從事專業(yè)工作,業(yè)務(wù)精湛,績效顯著,近來被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點仍以技術(shù)工作為主,以自身為榜樣帶動下級
C.以抓管理工作為主,同時參與部分技術(shù)工作,以增強與下級的溝通和了解
D.在抓好技術(shù)工作的同時,做好管理工作
18.設(shè)f(x)在點x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
19.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f'(-1)=0,當(dāng)x<-1時,f'(x)<0;x>-1時,f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點,但不是極值點B.x=-1不是駐點C.x=-1為極小值點D.x=-1為極大值點
20.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
21.下列命題中正確的為
A.若x0為f(x)的極值點,則必有f'(x0)=0
B.若f'(x)=0,則點x0必為f(x)的極值點
C.若f'(x0)≠0,則點x0必定不為f(x)的極值點
D.若f(x)在點x0處可導(dǎo),且點x0為f(x)的極值點,則必有f'(x0)=0
22.
23.
24.()。A.
B.
C.
D.
25.
26.微分方程y′-y=0的通解為().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
27.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)28.()。A.
B.
C.
D.
29.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().
A.不存在零點
B.存在唯一零點
C.存在極大值點
D.存在極小值點
30.
31.方程x2+y2-z=0表示的二次曲面是
A.橢圓面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
32.
33.
34.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)35.下列命題中正確的有().A.A.
B.
C.
D.
36.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
37.A.A.2B.-1/2C.1/2eD.(1/2)e1/238.A.A.2B.1C.0D.-1
39.
40.
41.A.A.1B.2C.3D.4
42.
43.
44.設(shè)在點x=1處連續(xù),則a等于()。A.-1B.0C.1D.2
45.控制工作的實質(zhì)是()
A.糾正偏差B.衡量成效C.信息反饋D.擬定標(biāo)準(zhǔn)
46.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
47.
48.
49.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx50.極限等于().A.A.e1/2B.eC.e2D.1二、填空題(20題)51.
52.
53.54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.設(shè)f(x)=x(x-1),則f'(1)=__________。三、計算題(20題)71.72.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則73.證明:74.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
75.求微分方程y"-4y'+4y=e-2x的通解.
76.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.77.78.
79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
80.
81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.82.將f(x)=e-2X展開為x的冪級數(shù).83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.84.求微分方程的通解.
85.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
86.
87.求曲線在點(1,3)處的切線方程.88.89.
90.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
四、解答題(10題)91.
92.
93.
94.設(shè)y=e-3x+x3,求y'。
95.求曲線的漸近線.96.
97.
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.y=ze-x在[0,2]上的最大值=__________,最小值=________。
六、解答題(0題)102.
參考答案
1.C本題考查的知識點為極限、連續(xù)與可導(dǎo)性的關(guān)系.
函數(shù)f(x)在點x0可導(dǎo),則f(x)在點x0必連續(xù).
函數(shù)f(x)在點x0連續(xù),則必定存在.
函數(shù)f(x)在點x0連續(xù),f(x)在點x0不一定可導(dǎo).
函數(shù)f(x)在點x0不連續(xù),則f(x)在點x0必定不可導(dǎo).
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
2.C解析:
3.A
4.B
5.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
6.C
7.B
8.D本題考查的知識點為偏導(dǎo)數(shù)的運算.
z=y2x,若求,則需將z認(rèn)定為指數(shù)函數(shù).從而有
可知應(yīng)選D.
9.C
10.A本題考查的知識點為級數(shù)的絕對收斂與條件收斂.
由于為萊布尼茨級數(shù),為條件收斂.而為萊布尼茨級數(shù)乘以數(shù)-k,可知應(yīng)選A.
11.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。
12.C
13.A考慮對應(yīng)的齊次方程y''-2y'-3y==0的通解.特征方程為r2-2r-3=0,所以r1=-1,r2=3,所以y''-2y'-3y==0的通解為,所以原方程的通解為y=C1e-x+C2e3x+y*.
14.D
15.B
16.C
17.C
18.A若點x0為f(x)的極值點,可能為兩種情形之一:(1)若f(x)在點x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點x=0處取得極小值,但f(x)=|x|在點x=0處不可導(dǎo),這表明在極值點處,函數(shù)可能不可導(dǎo)。故選A。
19.C本題考查的知識點為極值的第一充分條件.
由f'(-1)=0,可知x=-1為f(x)的駐點,當(dāng)x<-1時,f'(x)<0;當(dāng)x>-1時,f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點,故應(yīng)選C.
20.C
21.D解析:由極值的必要條件知D正確。
y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。
y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點,可知B不正確。因此選D。
22.B
23.D
24.C由不定積分基本公式可知
25.C
26.C所給方程為可分離變量方程.
27.Bf(x)=2x3-9x2+12x-3的定義域為(-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點x1=1,x2=2。
當(dāng)x<1時,f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時,f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時,f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
28.D
29.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點定理可知,y=f(x)在(a,b)內(nèi)至少存在一個零點.又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點,則至多存在一個.
綜合上述f(x)在(a,b)內(nèi)存在唯一零點,故選B.
30.D
31.C
32.D
33.D
34.A
35.B本題考查的知識點為級數(shù)的性質(zhì).
可知應(yīng)選B.通??梢詫⑵渥鳛榕卸墧?shù)發(fā)散的充分條件使用.
36.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
37.B
38.C
39.A
40.D解析:
41.A
42.D
43.B
44.C本題考查的知識點為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點。在x=1的兩側(cè)f(x)的表達式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點時,應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
45.A解析:控制工作的實質(zhì)是糾正偏差。
46.C
47.B解析:
48.B
49.B
50.C本題考查的知識點為重要極限公式.
由于,可知應(yīng)選C.
51.y=x3+1
52.0
53.54.0
55.
56.0本題考查了利用極坐標(biāo)求二重積分的知識點.
57.
解析:
58.2
59.
60.xex(Asin2x+Bcos2x)由特征方程為r2-2r+5=0,得特征根為1±2i,而非齊次項為exsin2x,因此其特解應(yīng)設(shè)為y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).
61.2m
62.1/21/2解析:
63.(-21)(-2,1)
64.11解析:
65.
本題考查的知識點為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
66.11解析:
67.
68.
69.ln|x-1|+c
70.
71.72.由等價無窮小量的定義可知
73.
74.由二重積分物理意義知
75.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
76.
77.
78.
則
79.函數(shù)的定義域為
注意
80.
81.
列表:
說明
82.
83.
84.
85.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
86.87.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
88.
89.由一階線性微分方程通解公式有
90.
91.
92.解
93.
94.95.由于
可知y=0為所給曲線的水平漸近線.由于
,可知x=2為所給曲線的鉛直漸近線.本題考查的知識點為求曲線的漸近線.
注意漸近線的定義,只需分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度印刷廠與出版社合作打印合同范本4篇
- 2025年度外墻保溫技術(shù)改造項目施工合同書3篇
- 2025年度生態(tài)旅游開發(fā)承包合同模板4篇
- 2024舞蹈賽事組織與管理服務(wù)合同
- 2025年度特色小吃店聯(lián)合經(jīng)營合同3篇
- 2025年度廚房設(shè)備安裝與用戶培訓(xùn)支持合同3篇
- 2025年度物流中心承包經(jīng)營合作協(xié)議書4篇
- 2024退學(xué)協(xié)議書:涉及在線教育平臺學(xué)員退費及課程重置合同3篇
- 2024網(wǎng)絡(luò)安全防護系統(tǒng)技術(shù)開發(fā)與服務(wù)合同
- 2024版設(shè)備軟件采購及技術(shù)服務(wù)合同
- 上海車位交易指南(2024版)
- 醫(yī)學(xué)脂質(zhì)的構(gòu)成功能及分析專題課件
- 通用電子嘉賓禮薄
- 錢素云先進事跡學(xué)習(xí)心得體會
- 道路客運車輛安全檢查表
- 宋曉峰辣目洋子小品《來啦老妹兒》劇本臺詞手稿
- 附錄C(資料性)消防安全評估記錄表示例
- 噪音檢測記錄表
- 推薦系統(tǒng)之協(xié)同過濾算法
- 提高筒倉滑模施工混凝土外觀質(zhì)量QC成果PPT
- 小學(xué)期末班級頒獎典禮動態(tài)課件PPT
評論
0/150
提交評論